Abstract Semantics of First-Order Recursive Schemes *

Robert Mullerf Yuli Zhout
Aiken Computation Lab Lab for Computer Science
Harvard University Massachusetts Institute of Technology
Cambridge, MA, 02138, USA Cambridge, MA, 02139, USA
muller@harvard.edu zhou@abp.lcs.mit.edu
Abstract

We develop a general framework for deriving abstract domains from concrete semantic domains in
the context of first-order recursive schemes and prove several theorems which ensure the correctness
(safety) of abstract computations. The abstract domains, which we call Weak Hoare powerdomains,
subsume the roles of both the abstract domains and the collecting interpretations in the abstract
interpretation literature.

1 Introduction

We are often interested in abstract properties of a program that provide approximate information about
its actual semantics. For example, that an expression e has type 7 or that a function f is strict (i.e.,
f(L) = 1). When an abstract property is computable, an algorithm for it can be embedded within
a compiler and the computed information can be put to a variety of uses during program translation.
For example, a type reconstruction algorithm can serve the dual roles of guaranteeing that “well-typed
programs don’t go wrong” and producing type information that can be used in generating object code
that is more efficient than would be possible in a naive translation.

The purpose of this paper is to develop some general conditions for deriving an abstract domain A
from a concrete semantic domain D. The conditions are intended to be as general as possible while still
guaranteeing that the derived domain, what we call a weak Hoare powerdomain, has sufficient structure
so that it can be used as a basis for computing correct information about D and functions over D. Let
Z(D) be the set of all ideals of D. A weak Hoare powerdomain A is any subset of Z(D) that includes
D as its top element and is closed under intersection and least upper bounds of ascending chains. (A is
ordered by subset inclusion.) Examples of weak Hoare powerdomains range from the rather uninformative
finite domain containing only D to the complete Hoare powerdomain (Z(D), C). Other familiar examples
include the strictness analysis domain [Myc81], Wadler’s finite domain [Wad86] and most instances of
Shamir-Wadge extended domains [SWT77]. (These will be presented in Section 2.) The structure of A is
sufficient to guarantee that recursive functions over D can be abstracted over A in such a way that the
abstract functions are continuous and yield correct information about their concrete counterparts over
D.

*This paper was presented at the IFIP Working Group 2.8, Workshop on Functional Programming Languages, Paris,
France, April, 1991 and was subsequently published as Harvard University, CRCT Technical Report TR-08-91.

TWork supported in part by the US Department of Navy, Space and Naval Warfare Systems Command and Defense
Advance Research Projects agency under contract N00039-88-@Q-0163.

fResearch performed in part at the Laboratory for Computer Science of the Massachusetts Institute of Technology.

Funding for the Laboratory is provided in part by the Advanced Research Projects Agency of the Department of Defense
under the Office of Naval Research contract N00014-89-J-1988.

It will be helpful to contrast our approach with the closely related framework of abstract interpretation
[CCT7] and [Myc81, BHA86]. The key idea of abstract interpretation is to define a computable abstract
domain which represents an abstract property of interest. Convergent computations over abstract domains
will necessarily be subject to information loss. The safety condition that ensures that the information
computed in the abstract domain is consistent with the concrete semantics is defined in terms of preserving
information in a collecting interpretation C(D). In [CCT7] the collecting interpretation is a powerset
construction. The collecting interpretation is related to the abstract domain by an abstraction map
Abs : C(D) — A. A concretization function Conc : A — C(D) maps abstract values to elements of the
collecting interpretation. The safety of a particular abstract interpretation is guaranteed if Abs and Conc
are an adjoined pair of functions. That is,

Abso Conc Idy
Conco Abs 3 Id¢(py.

In later work Mycroft [Myc81] retained the Cousots’ general framework but replaced the powerset con-
struction with a powerdomain construction. In [BHAS86], the collecting interpretation is the Hoare pow-
erdomain of D.

Our approach essentially combines the roles of the collecting interpretation C(D) and the abstract
domain A by giving A itself the (minimal) essential structure inherent in the Hoare powerdomain. As we
will show, when the concrete domain D is an w-algebraic cpo, any weak Hoare powerdomain A derived
from D forms an algebraic lattice. Moreover, since it inherits the information ordering of D, abstract
computations over A can approximate concrete computations over D.

The safety of abstract computations can be characterized easily since elements of A are ideals. A
function h : A — A’ is safe for f : D — D' if, h(t) = t' implies that f(d) € t' whenever d € ¢t. In order
to establish safety, the elements of the concrete domain must be related to ideals in A. In particular, an
element d € D is mapped under # to the least ideal in A containing d. Similarly, functions f : D — D’
are mapped to their least (or in the terminology of [SW77], tight) abstractions f# : A — A’. In theorem
2, we show: i) that # is continuous, and #) that f# : A — A’ is continuous whenever f : D — D' is
continuous. We then show that a function h : A — A’ is safe for f iff f# C h, thus f# is the least
function which is safe for f.

We then take up the question of recursively defined functions in the context of first-order recursion
schemes. Let f be the least fixpoint of a functional F' : (D — D') — (D — D'). We show in theorem
4, that the least fixpoint of the functional F' : (A — A') —» (A — A’) constructed by replacing the
primitives in F with their #-versions is safe for f.

We wish to point out the strong influence on our work of the general framework developed by Shamir
and Wadge in [SW77]. Our conditions for abstract domains were essentially derived from their condi-
tions for extended domains. One important advantage of the approach is that it simplifies the abstract
semantics — there are two domains rather than three. Another important advantage is that any number
of abstract domains can be derived directly from a single concrete semantic domain.

The remainder of this paper is organized as follows. In Section 2 we define weak Hoare powerdomains,
give a number of familiar examples and state their essential properties. In Section 3 we consider general
conditions for the safety of computation in the abstract domain. In section 4 we study recursively defined
functions. Section 5 suggests some avenues of future research.

2 Weak Hoare Powerdomains

Preliminaries

Let D = (U,C) be a partially ordered set. D is a complete partial order (cpo) if it has a least element L,
and every chain {z,} C D has a least upper bound | |,~, %, € D. An element d € D is compact if for
all chains {z,} C D, d C | |,~,2» = 3n > 0 such that d C z,,. Let compact(D) be the set of compact

elements of D. D is an algebraic cpo if compact(D) is a basis of D, i.e., for all d € D, d = | |,,», zn for
some chain {z,} such that z,, € compact(D), n > 0. D is w-algebraic if it is algebraic and compact(D)
is countable. (See [Sch86] for more details.)

We will generally use the metavariable b, ¢, d and e for elements of the concrete domain D and s and
t for elements of the abstract domain A. We will usually use the phrase “abstract domain” rather than
the more cumbersome “weak Hoare powerdomain.” Depending on context, we will refer to their elements
as ideals, abstractions or even types.

We now define conditions for obtaining an abstract domain from a cpo D. The elements of the abstract
domains are the weak ideals of [MPS86].

Definition 1 (Ideal) Let D = (U,C) be a cpo. An ideal of D is a set I C D such that
(i) del,d Cd=d €I (Iisdownward closed).
(ii) V {zn} C I such that {z,} is a chain in D, | [{z,} € I (I is chain-complete).
Let Z(D) denote the set of all ideals of cpo D.

Definition 2 (Weak Hoare Powerdomain) Let D = (U,C) be a cpo and S C Z(D). A= (S,C) is a
weak Hoare powerdomain of D if and only if it satisfies the following closure properties:

(i) U € A.
i) XCA=NXe€A
(iii) V C-chains {z,} C 4, U,5¢2n € 4.

Before proceeding to consider the essential properties of these domains we consider several familiar
examples.

Example 1 Let D; = bool + int, and let A; be the two point domain {0,1}, where 0 = {L} and 1 = D.
A; is an abstract domain for strictness analysis of first order functions.

Example 2 Let D, be the least solution to the recursive domain equation D = nil + (B x D). For the
special case where B = {a},, we can illustrate the structure of Dy by the following diagram. D- is a

<a,a,nil>
<a, nil> <a,jal ><l,a,nil><al ,nil>
N >
<a,l> <L,nid <J_,L,J_> <al,l> <J_,J|_,ni>l
N T~
ni | <1,1> <Ll
\ /

domain of lists. The Wadler abstract domain A, for strictness analysis is a four element chain

T

Le
|
00
|
L

where

T = Dy

1le = {l|some element of [is L}

oo = {l]|!is infinite, or the last element of [is 1}
1 = {lp}.

Example 3 Let D3 be the least solution of the domain equation
D = bool +int + (D x D) + (D — D).
The type domain A3 of a Milner type system can be defined inductively as the following;:
(i) bool, int, and T = D3 € As.
(ii) If s, t € As, then s x t, s = t € A3 where s X ¢ is the usual product domain and

s—>t={f|Vzes, f(z) et}

(111) Ifs g A3 then ﬂS S A3.
(iv) If {t,} is a chain in A3 then (J,,~tn € A3.

One can verify that As is an abstract domain. Note that polymorphic functions have intersection types,
e.g., the type of the identity function Az.z has the type [, ,, t — t. Note also that A3 contains more
ideals than is needed for Milner-style type reconstruction.

Our final example is drawn from [SW77] which defined a closely related notion of extended domains.

Example 4 Let D, = bool + nat. For d € D, let d = {d' | d' C d} (This left closure of d is given by {d}
in [BHA86]) and D = {d | d € D}. Then Ay = D, U {bool,nat, D4} ordered in the usual way.

T

bool nat

tt ff 0o 1 2 . . | tt/\ffo/m..
N N

L L

It is easy to see that A4 is an abstract domain. Note that A4 contains an isomorphic copy D of D. Thus,
Ay can be thought of as D, extended with type objects.

2.1 Properties of Weak Hoare Powerdomains

We now develop the properties of abstract domains which ensure that their structure is suitable for
computation. First note that for domain A, and arbitrary X C A, the greatest lower bound of X is the
intersection of X, but the least upper bound of X is generally not the union of X. However, due to
condition (iii) of definition 2 we have:

Lemma 1 If X C A is chain, then | | X = X.

Note also that conditions (i) and (ii) guarantee A to be a complete lattice under C with [) A as its
least element, D as its greatest element, ()| as [1 and | | X = ({¢t |t € A,t is an upper bound of X }.
Moreover, we have

Theorem 1 Any weak Hoare powerdomain A of an w-algebraic cpo D is an algebraic lattice.

Proof By the above remarks, any abstract domain A is a complete lattice. It remains to show that it is
also algebraic. The proof requires the abstraction map # : D — A, to be defined in Section 3. d# maps
d to the least ideal containing d.

d* =({teAldet}.

The crucial property of # that we require is that d € t <= d# C t, (lemma 4).

We shall show that each element t € A is the L.u.b. of some chain {¢,} of compact elements by actually
constructing {t, } for each t. Given t € A, let B = {b|b € ¢ and b is compact} be the set of compact
elements of t. Since D is w-algebraic, we can enumerate the elements of B, as bg,by,.... The following
two lemmas will be needed.

Lemma 2 t =[5, b,

Proof Clearly b, € t, thus b7 Ct,n > 0and || -,b¥ C ¢
We now show the reverse inclusion also holds. Since D is w-algebraic, each d € t is the limit of some
chain {¢,} where ¢,, € By, n > 0. Therefore

cn € |_| i
n>0
Since the right-hand side is an ideal, which is closed under the L.u.b. of chains, we have

d= | |ene | |02

n>0 n>0

Lemma 3 Ifej,es,...,e, are compact then U{e#,ef, ... ef) is compact.

Proof Let t = | [{e¥ e, ..., e#}, we show for all chain {s,,} in A

t C |_|sm — dN >0s.t. tCsy.
m>0

Since t C | |,,505m, we have ey, ez,...,en € |l,,505m = U5 Sm- It follows that b; € s,,, for some m;.

Let N =max{m; |1 <i < n}, then e,es,...,e, € sy, which means bfé C sy, 1 <i < n. Therefore

t:l_l{ef,ef,...,ef}gsjv.

Resuming our proof of theorem 1. Let us define
tn =| |07, 0F,... 0%}, n>o0.
{tn} is a chain, whose elements are compact according to lemma 3. More over by lemma 2
| | tn=[|0 =t
n>0 n>0
thus the theorem is proved. O

In the next section we develop one of the important consequences of the algebraicity of A: that every
continuous function f € [D — D'] has a continuous abstraction f# € [A — A'].

3 Abstraction and Its Safety

Let D be a domain, A be any abstract domain of D. We first define the mapping # : D — A such that
d* =([{teAldet}.

Intuitively, # maps every element d to the least ideal in A which contains it. Note that d# always exists

since A is a complete lattice. Therefore # is well-defined. Moreover, we have the following,

Lemma 4 det < d# Ct.

We now extend # to functions. Let A, A’ be abstract domains for D, D' respectively. Given f : D —
D', define f#: A — A’ such that

) =[] r@*.

det

We return to the examples from the preceding section.

Example 1 (continued) The abstraction map # : D; — A; is defined by
[0 ifd=1
1 ifd# L.
Example 2 (continued) (cf. [Wad86] where this abstraction map was originally defined)

1L ifli=1

1# oo [is infinite, or the last element of [is |
1le [is finite, some element of [is L
T 1 is finite and no element of [is L.

Example 3 (continued) For the non-functional values in D3, 1# = {1}, d¥ = bool if d € bool, and
d# = int if d € int. For functions in D3 we only show a few special cases. Clearly +# = int x int — int,
and cond” = ﬂteA3 bool x t x t — t. Note that cond is thus polymorphic. Another example of a
polymorphic function is Az.z, which gets mapped to ﬂteAs t—t.

Example 4 (continued) For d € D, d#* = d.
Theorem 2 (i) # : D — A is continuous.
(ii) f#*: A — A’ is continuous whenever f : D — D' is continuous.

Proof (i) We need to verify that for every chain {d,} in D,
(L] a)# =] . (1)
n>0 n>0
Note that d,, C | |,,5dn and # is monotonic, therefore d# C (| |, dn)?, and thus
L] aff < (]).)
n>0 n>0
On the other hand, by definition of # we have
(l_l dn)# = ﬂ{t| |_| dn € t}
n>0 n>0
= ﬂ{t |Vn >0d, €t} since t is an ideal
|| %, (3)

n>0

N

where the last inclusion holds since clearly V n > 0 dy € [],,5 d#. Combining equation (2) and (3) we
know (1) holds.

(ii) It is easy to see that f# is monotonic when f is continuous, therefore clearly

|| £7#(ta) € (] t)- (4)

n>0 n>0

To see the reverse inclusion also holds, we expand f#(| |, t,) according to definition to get

A = Jur@*de [t}

n>0 n>0
= Ll{f(d)# |d e U tn} since {t,} is a chain (5)
= || r* (6)

n>0

Note that closure condition (iii) in the definition of abstract domains is crucial to obtaining (5). Also
note that if d € ¢, then f(d)# C f#(t). Thus for every d € t,, n > 0 we have f(d)# C f#(t,). It then
follows easily that

L] f@* < || r#(tn). (7)
detn n>0
n>0 =

Equations (4), (6) and (7) together validates our claim. |

3.1 Safety

Intuitively, we would like f# to correspond to f, in the sense that if f#(¢) = ', then it is guaranteed that
f maps every element in ¢ to some element in ¢'. Obviously, there are many functions A — A’ satisfying
this condition, which is known in the abstract interpretation literature as safety. More specifically, we
shall say that a function h : A — A’ is safe for f : D — D' if h(t) = t' implies that f(d) € t' whenever
d € t. Our definition for f# will be justified shortly when we show it is in fact the least function safe for
f, but before we proceed, we first give the familiar characterization for safety in the following proposition.

Proposition 1 If f : D — D' and h : A — A’ are continuous, then the following conditions are
equivalent:

(i) h is safe for f.

(ii) For all d, f(d)* C h(d¥#), i.e., the following diagram commutes:

Proof (i) = (ii). Since d € d*, we know f(d) € h(d¥) by the safety assumption, and f(d)# C h(d*)
follows from lemma 4.

(ii) = (i). If d € t, then d# C t, therefore by assumption
F(d)* C h(d*) C h(b).
This implies that f(d) € h(t), i.e., h is safe for f. m|

We state an obvious lemma which will be needed later, which says that safety is closed under functional
composition.

Lemma 5 If h, h' are safe for f, [’ respectively, then h' o h is safe for f'o f.
f# is the least function safe for f. This fact is stated in the following theorem.
Theorem 3 h is safe for f iff f# C h (inclusion taken to be point-wise).

Proof (if) Assuming that h is safe for f, then for all d € t f(d) € h(t), which means f(d)* C h(t).
From this we can verify that

#) = || F(@* C h(t).

det
(only-if) By the definition of f# it is clear that f# is safe for f. If f# C h, then for all d € ¢

f(d) € f#(t) C h(t),
i.e., h is safe for f. a

Unfortunately, # is not closed under functional composition, i.e.,
(fog)* E f#og*.

Thus, composite functions will be subject to information loss. In [SW77] this problem is addressed using
case analysis.

4 Recursively Defined Functions

We now consider the question of how to compute abstract information for a recursively defined function
in the corresponding abstract domains. The functions we study in this section are those definable using
first-order recursion schemes [Vui74, DS76]. As in both of those papers we restrict our attention to
a single recursively defined function, extension to a group of simultaneous recursive definitions being
straightforward.

Specifically, let e be an expression which is either a constant d, the variable z, p(e) or f(e) where p is
a primitive function and f a function variable. Given an expression e containing variable z and function
variable f, the equation

flz)=e

defines a unique function fy as the least fixpoint of the functional
F =M\f\zx.e.

Our intention is to transform F' into F' by replacing the constants and base functions in F' by their
respective #-versions, and to show the least fixpoint of F" is safe for f;. To this end let us define the
map "~ s.t.

(i) d = d#,

>

=2x.

(i) ple) = p* (o).

(iii) f(e) = f(é).
We can now define
F'=\f.)\x.é

whose least fixpoint gives us a function h: A — A’
Theorem 4 h = fix(A\f.Ax.€) is safe for fo = fix(Af.Az.e).

We shall prove the theorem by an induction on the construction of the two fixpoints, where the
following two lemmas establish the crucial connections between them.

Lemma 6 If h is safe for p, then \z.€[h/f] is safe for \x.e[p/f].

Proof We prove the lemma by induction on the formation of e. There are four cases according to the
formation rules.

(1) e = d. Az.d = Az.d# is clearly safe for Az.d.

(2) e = z. Obvious.

(3) e = p(e'). We know
Az.p(e') = polx.e,
)\x.p(;z’) = p#olz.e.

Since by the induction hypothesis Az.€’ is safe for Az.e’, from lemma 6 it then follows easily that Am.p(é’)
is safe for Az.p(e’).

(4) e = f(€'). Similar to (3). O

Lemma 7 If {p,}, {hn} are two chains of functions s.t. hy is safe for p,, n >0, then | |, <, hn is safe
for |_an0 pn-

Proof Lett e A and d € t. If h, is safe for p,, then p,(d) € h,(t). It follows that

pu(d) € | | ha(t), n>0.

n>0

since the right-hand side is an ideal and is thus closed under the l.u.b. of chains, we have

|_| pn(d) € |_| hn(t):

n>0 n>0

thus the lemma holds. |
Proof of theorem 4: Let

ho = Az.{L1}

hn = Az.é[hn—1/f],
then h = |,5¢ fn. Similarly let

po = Ax.L

pn = Az.e[pn_1/f],

and we have fy = |_|n20 Pn- By lemma 6 we know h,, is safe for p,, n > 0. It then follows easily from
lemma 7 that h is safe for fjy. m|

5 Conclusions

We have developed a general framework for deriving abstract domains from concrete semantic domains
and several theorems which ensure the correctness of abstract computations. We believe that the frame-
work is simpler than abstract interpretations which employ collecting interpretations.

There are a number of interesting questions which require further study. We are particularly interested
in developing methods to improve the approximations of recursive functions. (That is, to reduce the
information loss by bringing the least fixpoint in the abstract domain as close to f# as possible.) Shamir
and Wadge developed a general case analysis method which may be useful when the abstract domain is
not too sparse.

We are also interested in surveying other applications of abstract interpretation to see if they might
be usefully recast in the current framework. We believe that the generality of the framework makes
it particularly well suited for type analysis which is the subject of increasing interest in the literature
[YO88, RW91, FP9I1].

If the framework is to be generally applicable to functional programming languages then it will have
to be extended analogously to [BHA86] to accommodate higher order functions. Unfortunately it seems
that the techniques in [BHA86] will not carry over. We expect this to be a major undertaking.

We are also interested in studying the computational aspects of fixpoint computations in abstract
domains along the lines of [Vui74, DS76]. A related problem is to develop good hueristic methods for
fixpoint computations over abstract domains that have infinite chains. Some ideas along these lines have
been suggested in [YOS88].

References

[BHA86] G. Burns, C. Hankin, and S. Abramsky. Strictness analysis for higher-order functions. Science
of Computer Programming, 7:249-278, 1986.

[CCT7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximations of fixpoints. In Proceedings of the Fourteenth
ACM Symposium on Principles of Programming Languages, pages 238-252, 1977.

[DS76] P. Downey and R. Sethi. Correct computation rules for recursive languages. SIAM Journal of
Computing, 5:378-401, 1976.

[FP91] T. Freeman and F. Pfenning. Refinement types for ML (extended abstract) (to appear). In Pro-
ceedings of the SIGPLAN Conference on Programming Language Design and Implementation,
1991.

[MPS86] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymorphic types.
Information and Computation, 71, No. 1/2:95-130, 1986.

[Myc81] A. Mycroft. Abstract Interpretation and Optimising Transformations for Applicative Programs.
PhD thesis, University of Edinburgh, 1981.

[RWO91] E. Ruf and D. Weise. Using types to avoid redundant specialization (to appear). In Proceedings
of the Symposium on Partial Evaluation and Semantics-Based Program Manipulation, 1991.

[Sch86] D. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and
Bacon, 1986.

[SW77] A. Shamir and W. Wadge. Data types as objects. In 4th Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science, Volume 52, pages 465-479, 1977.

10

[Vui74] J. Vuillemin. Correct and optimal implementation of recursion in a simple programming lan-
guage. Journal of Computer and System Science, 9:332-334, 1974.

[Wad86] P. Wadler. Strictness analysis on non-flat domains (by abstract interpretation over finite do-
mains). In Abstract Interpretation of Declarative Languages, pages 266—275. Ellis Horwood
Limited, 1986.

[YO88] J. Young and P. O’Keefe. Experience with a type evaluator. In Partial Evaluation and Mized
Computation, North Holland, pages 573-581, 1988.

11

