Syntax Macros in M-LISP:
A Representation Independent Dialect
of LISP with Reduction Semantics*

(Extended Abstract)

Robert Mullerf

Abstract

In this paper we present an efficient algorithm for avoiding unintended name captures
during syntax macro transcription in LISP. The algorithm is a hybrid of Kohlbecker’s
Macro-by-Ezample and Hygienic algorithms adapted for a representation-independent
dialect of LISP. The adaptation yields a substantially different model of syntax macros
than is found in S-expression LISP dialects. The most important difference is that
A-binding patterns become apparent when an abstraction is first (i.e., partially) tran-
scribed in the syntax tree. This allows us to avoid a larger class of name captures than
is possible in S-expression dialects such as Scheme where A-binding patterns are not
apparent until the tree is completely transcribed.

1 Introduction

The subtle problem of name capture during syntax macro transcription in LISP has been
discussed extensively in the literature [KFFD86, BR88, CR91]. Many of the recent attempts
to come to grips with it are based on the observation in [KFFD86] that the problem is
analogous to the classical problems with substitution in formal calculii. For example, if
performed naively the substitution (Az.M)[y := N] results in capture if z should occur free
in N (and y occurs free in M.) This is similar to the potential capture in the following or
macro:

(extend-syntax (or)
((or el e2) => ((lambda (x) (if x x e2)) el)))

A naive expansion of a call

“This paper appeared as Harvard University, CRCT Technical Report TR-04-90.

tThe Author’s address is: Aiken Computation Laboratory, Harvard University, Cambridge, MA 02138.
email: muller@harvard.edu. This research was supported in part by Defense Advanced Research Projects
Agency N00039-88-C-0163.

(or M N) ==> ((lambda (x) (if x x N)) M)

results in an erroneous form whenever = occurs free in N. So by analogy with hygienic sub-
stitution in A-calculus, the hygienic approach to macro expansion relies on an a-conversion
process during transcription to ensure that these kinds of captures (what we call vertical
captures) will not occur. It is shown that the algorithm respects the following hygiene con-
dition: “Generated identifiers that become binding instances in the completely expanded
program must only bind variables that are generated in the same transcription step.” This
approach has proved to be reasonably successful in guarding against this class of binding
problems and it is the basis of several recent macro implementations in Scheme.

On the other hand, this characterization of the problem is lacking in some respects. It
is possible to fully respect the hygiene condition but still have intended bindings broken
during transcription. This is because the hygiene condition says nothing about identifiers
that are introduced in the same step. For example, consider the macro:

(extend-syntax horizontal
((horizontal a (b c d)) => (b ¢ (d a))))

which does some simple rearranging of its arguments. A macro call such as
(lambda (x) (horizontal x (lambda (y) £f)))

transcribes to

==> (lambda (x) (lambda (y) (f x)))

On the other hand a call such as

(lambda (x) (horizontal x (lambda (x) f)))

results in a structurally different function

==> (lambda (x) (lambda (x) (f x)))

in which the associations between the binding and applied occurrences of the identifier x
are changed. While this simple example might seem somewhat contrived, in general the
identifiers in the two actual arguments to horizontal could have been produced in different
branches of the same parallel transcription step (and therefore receive the same clock value)
by textually remote macro definitions.

The example, highlights a fundamental distinction between hygienic substitution in
A-calculus and hygienic macro expansion in S-expression LISP: in the former the names
of bound wvariables are irrelevant, in the latter they are not. Moreover, Users of syntax
macros in S-expression LISP dialects have few guarantees about the integrity of bindings
for function expressions that occur within the scope of a macro call. In S-expression LISP
the macro expander treats the calling expressions as S-expressions and is insensitive to the
real binding structure intended by the programmer. The binding structure of the program
is not revealed until all macros are fully transcribed.

So while it is true that the hygienic approach will guard against vertical captures we are
also interested in addressing the class of horizontal captures illustrated above. In this paper

we present an efficient expansion algorithm that addresses both vertical and horizontal
capture. The algorithm is essentially a hybrid of Kohlbecker’'s Macro-by-Ezample (MBE)
[KW8T7] and hygienic (HME) algorithms. Our key idea is that the problem lies not with
either of these algorithms but rather with S-expression LISP’s lack of syntactic structure.'
So our adaptation of Kohlbecker’s algorithm is applied in the M-LISP dialect [?], which has
adequate structure. M-LISP is essentially a hybrid of McCarthy’s original M-expression
LISP and Scheme. Its essential abstract syntax is:

Ma=X || [M.M |2z| MM | M) | (IFM M M)

where X denotes the set of upper-case symbols, M-LISP’s symbolic constants, [M . M]
denotes a pair and x denotes the set of lower-case symbols, M-LISP’s identifiers. Its op-
erational semantics is presented in Appendix A for reference. One important property of
M-LISP is that it is independent of any representation of its programs. Since it is inde-
pendent of McCarthy’s original representation for M-expressions, M-LISP has no quotation
form or any of its related forms backquote, unquote or unquote-splicing.

In M-LISP, rather than explicitly writing a syntactic transform function, a macro writer
specifies the transformation in a pattern language superimposed on the core language. This
is the method of Leavenworth [Lea66] in which responsibility for syntactic transformation
lies with the compiler rather than with the programmer. For example, in M-LISP a let
macro can be given by:

(MACRO
((LET (i e) ...) b ...) ((LAMBDAi b ...)e ...0))

1.1 Trading Expressiveness for Safety

While Kohlbecker’s algorithms form the basis of our approach, their adaptation in this LISP
dialect yields a substantially different model of macros. In general, we have followed a more
conservative approach, trading off expressiveness for safety. For example, we provide no
method for a macro to syntactically decomposing an abstraction (Az.M) into its parts z
and M. Once it is introduced in the tree, an abstraction may subsequently be deleted or
copied. If it is not deleted, macro calls in its body may be expanded yielding a new term
(Az.M'"), but it cannot be broken into parts. As a consequence, A-binding patterns become
apparent when abstractions are first (i.e., partially) transcribed in the tree. This property
will allow us to state and prove tighter restrictions on the capture of identifiers than is
possible in S-expression LISP dialects in which the A-binding patterns are not apparent
until the tree is completely transcribed.

On the other hand, this is a significant restriction on the kind of macros that can
be written. For example, in S-expression LISP one can write a reference count macro

!The problem with the syntactic structure of LISP is quite independent of the fact that its programs are
understood to be represented by S-expressions. Rather, it is the particular representation defined in [McC60]
which is problematic. In particular, one of the base cases in the original inductive coding of M-expressions as
S-expressions for eval is not well-defined. A full account of the ramifications of this are beyond the scope of
this paper and are covered in Section 2 of [?]. It is remarkable that this bug has been propagated throughout
the LISP dialects including Common LISP and Scheme.

Program = (MACRO [P P] ---)M ---
M oa= X | [(MM | e | QaoM) | (M) (1)
Po= X || (PP |5 | QaP) | (P-) | @)

(P)| [P]| QgP) (3)

Figure 1: Syntax

which takes an abstraction (lambda (x) M) and returns an abstraction (lambda (x) M’)
in which a counter is incremented each time the bound identifier x is referenced in M.
This cannot be written as a macro in M-LISP. Moreover, with our strict pattern matching
discipline it is impossible to determine to what kind of syntactic structure a particular
pattern variable is bound.

Some of these restrictions can be overcome within the current framework simply by
adopting a different coding style. Others would require an extension of the algorithm to
include some of the features found in [BR88] and [CR91]. This raises the old question of just
how expressive a macro facility ought to be — a question which has been largely ignored
in the recent literature on name capture. Clearly there ought to be a balance between
expressiveness and safety. The utility of the present work is predicated in part on the thesis
that our trade-off is a reasonable one. Although the independent development of MBE lends
some credence to this idea, this is a conjecture that can only be assessed in practice. Our
initial experience with this system is encouraging and we believe that the system will be of
interest to designers of other applicative programming languages such as ML and Haskell
who wish to extend their languages with facilities for syntactic abstraction.

Among other points highlighted in the paper, M-LISP macros are distinguished by
symbolic constants rather than identifiers. This eliminates keywords and provides visual
information to readers of programs. The transcription algorithm is efficient because it
indexes identifiers as they are transcribed. This is done in a separate pass through the
tree in [KFFD86]. This is a property we share with the recent work in [CR91] which was
developed independently of our work.

The remainder of this abstract is organized as follows. In Section 2 we introduce the
syntax, define conventions and present the general framework for transcription. In Section 3
we present the transcription algorithm. In Section 3.1 we define the tree traversal algorithm
and the structure of syntax tables. In Section 3.2 we define the binding valuation and in
Section 3.3 we define the transcribing valuation. In Section 4 we state and prove new
correctness conditions for transcription. Section 5 provides a comparison with related work
and Section 6 contains concluding remarks. Appendix B contains definitions of auxiliary
functions.

2 Preliminaries

The syntaxes of programs, terms and patterns are given in Figure 1. The centered dots “- - -7

denote sequencing in the metalanguage. Thus, a program is a sequence of macro definitions

followed by some terms. Equation (1) defines the syntax of terms. As in the abstract
syntax the symbol X denotes the set of upper-case symbols. The symbol zy denotes the set
of lower-case symbols indexed by 0. The indexes indicate that the identifiers occur in the
source text. The rightmost clause defines both applications and macro calls. Equations (2)
and (3) define the pattern language. Following the term language, upper-case symbols are
pattern constants and lower-case symbols are pattern variables. Parentheses and brackets
are used for grouping. Ellipses “...” denote sequencing.

We use the symbol T'erm for the set of terms and the symbol Pat for the set of patterns.
We use the metavariables M, M, My, --- to range over Term, and the metavariables P,
Py, P,, --- to range over Pat. We use Z, Zy, Zs, --- to range over T'erm U Pat. We use j
for clock values 0,1,--- and y;, zj,, xj,, - - - to range over the set Twar of variables indexed
by clock values. We use the metavariables z, y, vi, vo, ... to range over the set Puvar of
pattern variables. In contexts where both z and z; appear, they are understood to have
the same name. We use the single metavariable X to range over both symbols and pattern
constants. We use the symbol = to denote syntactic equality.

As in MBE the transcription of a call term M is determined by pairs of patterns [P, P].
The patterns are retained in syntaz tables which are given by

Te€T =[T — Term — Nat — Term]

The transcription of P; is governed by an environment of pattern variable bindings obtained
from matching the call term M to the call pattern P.. Environments are drawn from the
domain:

p € Env = Pvar — (Nat, Term™)

We use the symbol py to denote the empty environment. The expression p[z — (n, M)] de-
notes the environment obtained from p by associating the pattern variable z with the tuple
(n,M). The expression ({(n,M) | 1) selects n, and ({(n, M) | 2) selects M. In (n, M), n
gives the level of ellipsis nesting. If n = 0 then the variable is not matched in the scope of an
ellipsis, and M is a component of the call term. If n > 0 then the variable is governed by at
least one ellipsis and M is a sequence of call subterms. For example, matching the pattern
[x ...] to the call term [A i (f j)] produces an environment [z — (1,[A i (f j)])].
While matching the pattern [[x ...] ...] to the call term ([a A] [true TRUE]) pro-
duces
[— (2,[[a A][true TRUE]])]

The ellipsis level will be used in the transcription process to guide transcription of occur-
rences of .
2.1 Concrete and Abstract Syntax

Proper lists and functions of several arguments may be expressed in concrete syntax as
defined by the following identities:

(Zy Zy - Zy) = [Zy.[Zy . [[Zy . []] -]

]
)

~ —

Term -T —-U — K — Dv
Core-Term — U — K — Dv
Term — T — Nat — Term
Pat, x Paty T — T

Pat, = Env — Term — Env

S m M9 A

Pat; — Env — Nat — Term

Figure 2: Valuations

For example, matching the concrete expression [A B C] against the pattern [first . rest]
produces the environment

[first — (0, A)][rest — (0, [B . [C . [111)]

In the absence of syntax extensions, applications may also be defined in their curried
abstract form (Z Z), with the following correspondence between concrete and abstract
syntax:

(ZIZQZ?,)E((ZIZQ)Z3) (4)

In the presence of syntax extensions, however, it is more convenient to obtain the left-hand
side of (4) through sequencing in the metalanguage since it preserves the concrete structure.
This not only simplifies the call interface but it also simplifies the interaction of the ellipsis
with the left-associativity of application. For example, consider the pattern (x y ...) and
the call form ((f g) h i). The abstract form of the latter is (((f g) h) i), but the
preferred match:

w0,)]y~ (L, i])]

is determined by the original concrete structure.

2.2 Valuations

The valuations of interest are shown in Figure 2. C corresponds to an interpreter or compiler
and D defines the dynamic semantics. W, £, B and T collectively transcribe syntax macros.
C is given by:

C[Myo] = Ar.let My = W[My]r1 in Aps.D[Mg]pk (5)

The syntax tree My is recursively walked by W with syntax table 7 and an initial clock
value. If the transcription process terminates the resulting core term M will be evaluated
according to the dynamic semantics D in environment p and continuation x. Two notes
about D: it identifies all free variables of the same name z;,, ;, in M} even though their
indexes may differ. Secondly, it applies (4) to the result of transcription. We will not
consider D further here since it has no bearing on syntax transcription.

W[X] = IjX
WIIT = Ars]l
WM . N]] = Arj.W[M]rj . W[N]rj]

W[[:Ej/]] =)\Tj.{ljj/ jl > 0

Tr[(My -~ My)]j,
WIMi]7j --- W[Mi]7j)

Figure 3: Syntax Tree Traversal

3 The Transcription Algorithm

3.1 Syntax Tree Traversal and Syntax Tables

The valuation W is given by induction on the structure of syntax trees in Figure 3. The
final equation defines the semantics of terms of the form (M; --- Mj) which include both
applications and macro calls. If M is a symbolic constant then the term is taken as a macro
call. To transcribe the term the expander applies the syntax table to itself, the call term
and the current clock value. If M is not a symbol then each M;,1 < i < k is recursively
walked.

The empty syntax table contains no transcription patterns, thus it maps all terms to
themselves.

T0O =)\TM]M

A table is extended when a macro definition is processed:

E[[P. P] = M\r7'Mj. (6)
B[[PCHPUM 7é 1—-
WITIP](B[Pe]poM)j]7'(j + 1),
TT'Mj

P, represents the call pattern, P, represents the transcription pattern, 7 represents the
macro-definition-time syntax table and 7' represents the outermost macro-transcription-
time syntax table. M represents the call term and j is the clock value. The symbol
1 denotes a failed match. If the call matches the call pattern then an environment is
generated and used for the transcription process. Since the resulting syntactic structure
may have macro calls, it is recursively walked with the outermost syntax table and an
incremented clock value. If the call fails to match then it is checked against the next entry
in the table.

We can inductively define the length of a transcription based on the the then branch of
(6). The induction selects the maximum of the lengths of the parallel tree walks in the pair
and application clauses of W. Thus, the length is the highest clock value occurring during
W[[Mg]]’r]_

B[X] = MpMM=X —p, L

BIN] = MMM=[]-p1
B[[P .P]] = MMM =[M;.M)]— fold [P P][M; Ms]p, L
B[z] = ApM.z € Dom(p) — ((p z) = (0, M) — p, L), p[z — (0, M)]
BI(Py -+ P)] = ApM.M = (M- My) — fold [Py -+ Pg][M; - - My]p, L
B[(P Py...)] = AoM.M=(M,---M,)— seqgqmatch [Py --- Pg| [My---My,] p, L
B[[Pi-+Pg...]] = ApM.M=[M,---M,]— seqgmatch [Py --- Py [M;---M,] p, L

Figure 4: Environment Construction

TIX] = i X
TLOT = Aoi[]
TLIP . Pl] = Xpg[T[Pilpj - T[P2]p]
TLPy - Pe)] = Xog(TPilps -+ TIPelps)

Figure 5: Simple Transcription Equations

3.2 Environment Construction

The environment is constructed by the binding valuation B : Pat, — Env — Term — Enwv,
which is defined by cases on patterns in Figure 4. If the call fails to match one of these
patterns it denotes L. A pattern symbol matches a call symbol if they are identical symbols.
A pair pattern matches a pair in the call if the cdr component of the pattern matches the
cdr component of the call in the environment constructed by matching the respective cars.
Matching is left-to-right. A pattern variable matches any call term provided that the
variable is not already bound to a different value in p. Application patterns define the top
level interface. These follow the left-to-right matching of a pair. A sequence pattern of the
form (P, --- Py ...) matches a call if the call is an application form, P; through Pj_; match
the first k—1 components of the call form and Py matches each of the remaining components
of the form. The auxiliary functions fold and segmatch are defined in the appendix.

We wish to emphasize that we define no semantics for matching a pattern of the form
(Az.P). In M-LISP, abstractions cannot be decomposed. This is a key difference between
our system and those proposed for Scheme.

3.3 Transcription

We now consider transcription of the pattern P, in the environment B[P.]poM and clock
cycle j. The transcribing valuation 7 : Pat; — Env — Nat — Term, is defined by cases on
patterns. The simple equations are presented in Figure 5. Symbols and nil are introduced
directly into the syntax tree. Pair and application patterns cause pair and application forms

to be introduced with recursively transcribed components. The equations for transcribing
ellipsis patterns follow those defined in [Koh86] and are defined in the appendix. Two
equations that require some elaboration appear in the text below.

3.3.1 Transcribing Pattern Variables

The transcription of a pattern variable is determined by its value in p. If the variable is
defined in p with top level value M, then M is the transcription. If the pattern variable is
unbound in p then it is taken to be a lambda variable rather than a pattern variable; it is
introduced with the current clock value.

Tlz] = Apjx € Dom(p) = ((p z) = (0, M) = M, L), z;

3.3.2 Transcribing Abstraction Patterns

Procedure transcription breaks into two cases depending on the binding status of the pattern
variable z in the formal parameter position. If z is bound in p, clause (7), then it is a
compile-time pattern variable which should have matched some indexed run-time variable
y;j in the call term. If it has, then a procedure is introduced into the tree with formal
parameter y;; and a body determined by the recursive transcription of P. If z is unbound
in p, clause (8), then x corresponds to a generated identifier. A procedure is introduced
into the tree with the time stamped version of z (i.e., ;) as its formal parameter. The
body pattern is transcribed in an environment that maps the pattern variable to the new
lambda variable.

T[(Az.P)]| = Apj.xz € Dom(p) —
((p z) = (0,y;1) = (Ay;. T[Plpj), L), (7)
(Az;. T[P](plz = (0,;)])7) (8)

This clause can be modified (at the expense of safety) to allow for intentional captures.
Since our current emphasis is on safe transcription we do not consider this extension here.

4 Name Capture

In the following we use the familiar notion of contexts, C[], in considering the tree structure
M which ultimately results from a terminating transcription of My in (5).

4.1 Vertical Capture

We use the term upward capture to refer to captures in which, for some j, s, an applied
occurrence is introduced in step j + s within the scope of a binding occurrence of the same
name introduced in step j. For example, taking j =0 and s = 1:

(extend-syntax first
((first x) (car x)))

(lambda (car) (first z))
=> (lambda (car) (car z))

is an upward capture. We use the term downward capture when, for some 7, s, an applied
occurrence introduced in step j is captured by a binding occurrence introduced in step j+s.
An example of this was illustrated in the introduction.

The proposition that guarantees the correct transcription of these vertical captures is:

Proposition 1 (Vertical Safety) Let W[My]71 = M) = C[(Azxj.M')]. Then every zj €
M’ was introduced in step j'.

This is vacuously true since j increases monotonically at each transcription step. Since j’
may be 0, the proposition is a generalization of the hygiene condition.

4.2 Horizontal Capture

As we have noted, neither the hygiene condition nor the proposition are sufficient to rule out
broken bindings in general. The example in the introduction illustrates that capture may
also occur horizontally within a single step by having an applied occurrence of an identifier
xj» move within the scope of a binding occurrence of the same name that was generated in
the same step. Similarly, an applied occurrences of x; may occur in step j within the scope
of a binding occurrence Az;/, and later moved out of that scope.

The difficulty in S-expression LISP is that it cannot, in general, be determined what
role a symbol will ultimately play in M{. In particular, it cannot be determined whether or
not a symbol is an identifier. This is not the case in M-LISP since it distinguishes between
symbols and identifiers, has no quotation form and syntax transcription does not decompose
abstractions. Thus, we can track the development of the term (Azj;.M') from the time it
is first (i.e., partially) introduced. For example, if (MA) transcribes to (Azo.(MB)) in step
1 and (MB) transcribes to z2 in step 2. Then (Azg.z2) is fully transcribed in step 2 but
introduced in step 1.

If (Azj.M') is introduced in the syntax tree in step j then, by convention, we say that
it was introduced as (Az;.M) if this was introduced in step j and M transcribes to M'.
There are three points at which a term (Az;.M') € W[M]r1 can be introduced:

1. 5 =0. Then (A\z;;.M') = (Azg.M'"). Its introduced form (Azo.M) occurs in the source
tree and, since there is no binding equation B for A\, W[M]r1 = M.

2. 7 > 0 and (Azj.M') is established, for some pattern P, as (Az;.T[P]pj) such that
for some p,y, (py) = (0,z;) (in general j # j'.)

3. j > 0and (Azj.M') is established, for some pattern P, as (Az;. T [P](p[z — (0,z;)])4)
such that, for p,z,x & Dom(p).

Once a term (Az;.M) is introduced in the tree it may subsequently be deleted or copied.
If it is not deleted macros in its body may be transcribed. We define the scope of its binding
occurrence Az; to be the region between the “.” and the “)”. At step j this is occupied
by M. For example, the rightmost zy in (Azg.(MA z4)) occurs in the scope of \zy even
though the syntax extension MA may operate on it.

10

Proposition 2 (Horizontal Safety) Let the terminating transcription
occur in n steps. Let (Azj.M') be introduced as (Axzj.M) in step j. Then

1. No identifier occurrence y;, € M at the end of step j appears outside of the scope of
Az in step s, j < s < n.

2. If the identifier occurrence yj, € M at the end of step j, then yj, can only appear in
the scope of Axj in step s, j < s < n, if jo > j.

Proof: (Sketch)

1. Assume the converse. Then, for some s', step j + s’ transcribes the identifier occur-
rence yj, outside the scope of A\z;. The transcription has a pattern variable which
matches 1, in the scope of Az; and transcribes it outside. However, this is impossible
since there is no binding equation for abstractions. The only pattern which matches
(Azj.M) is a pattern variable.

2. Similar.

Remark: An identifier occurrence y;, in the scope of Az;; may be left in place, copied,
deleted or moved into a hole in the scope of Az;. For example,

(MACRO
[(M1 x) (LAMBDA x . (M2 x x))]
[(M2 x y) [x . (LAMBDA x . x)1])

(M1 a)
=> (LAMBDA a . (M2 a a))
=> (LAMBDA a . [a . (LAMBDA a . a)l)

5 Related Work

Although M-LISP’s syntax macro facility is based on the MBE and Hygienic algorithms
there are a number of important points of contrast. These stem from M-LISP’s structured
(i.e., quotation-free) abstract syntax. This property was essential to the tightened correct-
ness conditions. We briefly consider a few of the other distinctions. The Hygienic/MBE
algorithm uses the following interface:

(extend-syntax <keyword-list> <key-identifier-list>
(<pattern> <fender> <pattern>) ...)

The keyword list declares that a set of symbols are associated with syntax extensions and are
not identifiers. Keywords are not required in M-LISP because syntax macros are associated
with symbolic constants rather than identifiers. Key identifiers are those for which free
occurrences in the macro call are intended to be associated with binding occurrences of the
same name in the macro definition. For example, in

11

(MACRO
[(LOOP e ...) (call/cc (LAMBDA exit-with-value . (WHILE TRUE e ...)))1)

free occurrences of the key-identifier exit-with-value in the calling form are intended to
be captured. We have omitted the modification to clause (8) which governs these controlled
captures. This is not an essential restriction. The interface can be extended to include a
key-identifier list and clause (8) can be modified to associate the generated binding instance
with the applied instances in the transcribed body. Unfortunately, it is not clear how to
distinguish between intended key-identifier captures and accidental captures.

Although the MBE interface is based on the specification of transformations, it never-
theless permits a macro writer to explicitly operate on the S-expression representation of
the calling form through fenders. These are arbitrary LISP expressions evaluated during
transcription to perform checks on the calling expression. Since this representation depen-
dence is contrary to the design goals of the M-LISP macro facility, we provide no analog of
fenders. While there are clearly many S-expression LISP macros which cannot be expressed
in this style we wish to point out the parallels between Scheme’s reformulation of functions
from metalinguistic to linguistic status and our reformulation of macros. In LISP 1.5, for
example, function representations could be dynamically constructed

(defun funmaker (args body)
(cons (quote lambda) (cons args (list body))))

and then applied as in
> ((lambda (f) (f (quote a))) (fummaker (quote (x)) (quote x)))

a

In practice, the loss of such dynamically constructed functions has not proved to be a
significant hardship in Scheme and we have reason to believe that this will prove true of
our restructuring of macros as well.

Our work has parallels with the recent work of [CR91]. Contrary to their view that the
main problem with the Kohlbecker’s hygienic algorithm is its inefficiency, we believe that is
main problem is that it does not address the kinds of captures considered above. We have
not considered lexical nesting of macros in our work.

6 Conclusions

We have presented a framework for extending the syntactic structure of a simple representation-
independent dialect of LISP which avoids a large class of possible name captures. The
structure of the syntax was essential for the compiler to distinguish binding patterns during
transcription.

A Operational Semantics of M-LISP

The operational semantics is given in the style of [Plo75]. Recall that the abstract syntax is:

Mo=X || [M.M | 2| (MM | A\x.M) | (IF M M M)

12

Axioms:

((Az.M) N) —=» M][z:= N] — NeV
(CAR [Ml M2]) — M — My,MyeV
(CDR [Ml M2]) — M> — My,MyeV
(EQ? My Ms) —» TRUE — M, N symbols, M = N
(EQ? My M) —» FALSE — M, N symbols, M # N
(ATOM? M) —» TRUE — M €V, an atom
(ATOM? M) —» FALSE — M €V, not an atom
(IF TRUE M; Mg) — M
(IF FALSE M; Mg) — M>
Inference rules:
M —M' N—p»N' MeV
(M N)—=HM' N)’ (M N)—HM N')
M —=M' N—N' MeV
[M . N]—{M' . N] " [M . N]—{M . N']
M, —=M]

(IF My M M3)—v>(IF M{ Mo M3)

Figure 6: The Operational Semantics of M-LISP.

We use the symbol A; to denote the set of terms. We extend the A-calculus notion of substitution
Nz := M], “M for free occurrences of z in N” with the additional clauses:

Xfz:=M] = X
Jlo:=M] =[]
[N . L[z == M] [N[z := M] . L[z := M]]

and similarly for the conditional. We define the set V' of values inductively as containing any term of
the form X, z, [], (Az.M) or [M; . M>] whenever M; and M, are values. The operational semanitcs
is then defined in Figure 6.

B Auxiliary Functions
The auxiliary function fold : Pat* — Term* — Env — Enuv, is given by
fold [Py --- P,|[My --- Mylp=B[P,](--- B[Pi]pM; ---)M,

The function seqmatch : Pat* — Term* — Env — Env, matches a sequence of patterns to
a sequence of call terms in environment p. The patterns match with call terms one-for-one until
the last pattern Py is reached. This pattern is mapped across the remaining call terms M}, through
M,,. The resulting sequence of environments is reduced to a single environment by combine. For
0<i<k<n

segmatch [P; -+ Py_1 Py][M; -+ Mp—y My, -+ M,] p=
combine (fold [Py - - - Pe—1][My - - - Mi_1]p)[B[Pr]po Mk - - - B[Pr]po My
The function combine : Env — Env* — Enwv, is given by

combine p [p1 -+ pa] = Aa.x € Dom(py) = ((prx 4 1)+ 1, [(p1a 1 2) - (pu L 2)]), pa

13

The equation for a pair sequence pattern is

TLIE - P -..]] =
Apj.3x € Dom(p | varsof(Py)) such that (px | 1) >1—
let [pr -+ pn] = decompose(p | varsof(Py)) in
[TTP]ps -+ TlPe—lpi TIP:lpri -+ TIPelpnil, L

The function decompose : Env — Env*, which takes an environment and splits it into a sequence
of environments is given by

decompose = Ap.Jv € Dom(p) such that (pv |2) =[] =,
let {v1,...,vx} = Dom(p) in
[(polvr = splita((p v1))] -+ [vx = (splita (p vp))]) -
decompose(polvy > splith(p v1))] --- [vi > splitb(p vi))])]

The functions splita and splith are given as in MBE by

splita{n, My = (n=0)—(0,M),(n—1,hd(M))
splitb(n, M) = (n,(n=0) — M,tl(M))

References

[BR&§] A. Bawden and J. Rees. Syntactic closures. In Proceedings of the ACM Symposium on
LISP and Functional Programming, pages 86-95, 1988.

[CRI1] W. Clinger and J. Rees. Macros that work. In Proceedings of the Eighteenth ACM
Symposium on Principles of Programming Languages, pages 155-162, 1991.

[KFFD86] E. Kohlbecker, D. Friedman, M. Felleisen, and B. Duba. Hygienic macro expansion.
In Proceedings of the ACM Symposium on LISP and Functional Programming, pages
151-161, 1986.

[Koh86] E. Kohlbecker. Syntaxz Extensions in the Programming Language LISP. PhD thesis,
Indiana University, 1986.

[KW87] E. Kohlbecker and M. Wand. Macro-by-example: Deriving syntactic transformations
from their specifications. In Proceedings of the Fourteenth ACM Symposium on Principles
of Programming Languages, pages 77-84, 1987.

[Lea66] B. Leavenworth. Syntax macros and extended translation. Communications of the ACM,
9:790-793, 1966.

[McC60] J. McCarthy. Recursive functions of symbolic expressions and their computation by
machine. Communications of the ACM, pages 184-195, 1960.

[Plo75] G. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Sci-

ence, 1:125-159, 1975.

14

