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Abstract

A rewrite system has standardization iff for any rewrite sequence there is an equivalent one which
contracts the redexes in a standard order. Standardization is extremely useful for finding normalizing
strategies and proving that a rewrite system for a programming language is sound with respect to the
language’s operational semantics.

Although for some rewrite systems the standard-order can be simple, e.g., left-to-right or outermost-
first, many systems need a more delicate order. There are abstract notions of standard order which
always apply, but proofs (often quite difficult) are required that the rewrite system satisfies a number
of axioms and not much guidance is provided for finding a concrete order that satisfies the abstract
definition.

This paper gives a framework based on combinatory reduction systems (CRS’s) which is general
enough to handle many programming languages. If the CRS is orthogonal and fully extended and a
good redex ordering can be found, then a standard order is obtained together with the standardization
theorem. If the CRS also satisfies further criteria, then a good redex ordering is mechanically obtained
from the rewrite rules. If the CRS is a constructor system and satisfies an additional requirement,
then definitions of wvalue and evaluation providing an operational semantics are automatically obtained
together with a Plotkin/Wadsworth/Felleisen-style standardization theorem.

1 Introduction

1.1 Motivation

The motivations for this paper are as follows.

1. In the design of a programming language, it is desired that the operational semantics (a.k.a. the
evaluation relation) of the language is consistent with an associated rewriting system (calculus) that
is used to reason about program equivalence [Plo75]. This situation may arise in either of two ways.

(a) One may start with a rewriting system and devise an operational semantics with the intention
that the operational semantics is maximally defined w.r.t. the possibilities allowed by the rewriting
system, i.e., the operational semantics is as complete as possible.

(b) One may start with an operational semantics and devise a rewriting system hoping that the rewrite
system equates as many programs as possible without equating operationally distinct programs,
i.e., the rewriting system is sound.
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In either case, one is faced with the task of verifying the consistency between the operational semantics
and the rewriting system. A proof of standardization is one way to do this.

2. The existing theoretical tools for the above task have proven difficult to use. In practice, standardization
proofs have been carefully hand-crafted for equational calculi intended for program reasoning [FF89,
FH92, Mul92, AF97]. When proving standardization for a new language, it is a laborious task to
adapt an existing proof to the new language. There are some general-purpose tools from the rewriting
community, but the programming language theorist has problems using them for various reasons:

(a) Some methods are too weak, e.g., the method of Klop only handles left-normal rule sets [Klo80].
Any method which only supports the traditional “left-to-right” order will usually be too weak.

(b) Other methods are too abstract. There are very general syntax-free frameworks [GLM92, KG96],
but they do not reduce the burden significantly in comparison with the hand-crafted approach
because the programming language theorist still has to prove their system satisfies the various
axioms, which is very tedious to do correctly.

What seems to be needed is a framework that is abstract enough to handle a variety of languages, but
is concrete enough that the programming language theorist can embed their language in it without too
much difficulty.

1.2 Contributions of this Paper

This paper contributes a framework for proving standardization for programming language calculi based
on higher-order rewriting techniques, specifically, combinatory reduction systems (CRS’s). The work is
significant in the following ways:

1. The framework applies to any calculus where the left-hand sides of rewrite rules are such that when
partial matches for more than one left-hand side exist there is always a position to check for the rest
of the match which is in common among all of the partial matches. Programming language calculi
generally seem to have this property. The framework avoids any “left-to-right” bias.

2. For a calculus to which the framework applies, we prove the standardization property. We carry out
all of the necessary underlying work for this, proving all of the necessary properties of CRS’s.

3. For CRS’s that typically arise in programming language semantics, the constructor systems, we show
how to automatically derive the sets of values and evaluation contexts directly from the rules of the
CRS. These in turn determine an evaluation relation for the CRS.

4. We demonstrate that the methods developed in this paper are convenient to use by proving stan-
dardization theorems for two call-by-value A-calculi, thereby showing for each the consistency of its
operational semantics with its rewriting system. A particular contribution here is demonstrating the
technical details of encoding a programming language calculus as a CRS.

1.3 Related Work

Standardization of a rewrite system is the property that for any rewrite sequence, there is a permutation-
equivalent one which contracts the redexes in a nice order which is called “standard”. One of the important
properties of standard rewriting is that it provides a normalizing rewrite strategy. Standardization was first
shown by Curry and Feys [CF58].

There are a variety of methods of proving standardization. Two important methods were devised by
Klop, (1) identifying the “leftmost” (most needed) redex contracted in a rewrite sequence and performing
it first and (2) replacing anti-standard pairs with standard complete developments [K1o80]. We use Klop’s
second method. Huet and Lévy define standard reductions for orthogonal TRS’s as outside-in reductions,
using a leftmost choice function to determine a unique standard reduction for a permutation equivalence
class [HL91a]. Their proof of termination of the standardization algorithm depends on the disjointness of
residuals through arbitrary rewrite sequences, a property of OTRS’s but not of HORS’s. Gonthier, Lévy,



and Mellies proved a standardization theorem for abstract rewriting [GLM92]. Mellies has done further work
on abstract standardization [Mel98].

Other research into standardization includes the following. Jim and Meyer use a combination of Klop’s
first and second method to prove standardization for a variant of PCF and then use that result to prove
the context lemma [JM96]. Suzuki used Klop’s second method to prove standardization for conditional
term rewriting systems [Suz96]. There is some more discussion of Klop’s second method in [vO96]. Khasi-
dashvili and Glauert proved something they call abstract standardization [KG96] and what they call relative
standardization [GK]. Standardization has been used extensively for validating the consistency of an op-
erational semantics with a calculus by Plotkin, Felleisen, Ariola, Friedman, Hieb, Muller, and others not
listed [Plo75, FF89, FH92, Mul92, AF97]. The method of Ariola and Felleisen depends on disjoint redexes
having disjoint residuals.

Higher-order term rewriting has been presented in a number of different formalisms, including several
variations on the format of CRS’s [Klo80, Nip91, Kv095, Ken89, vR96, vO94, KvOvR93, Kha90, Tak93,
Wol93].

Because one of the aims of standardization is finding normalizing rewriting strategies, much work on
normalization is related. Huet and Lévy devised the idea of needed redexes, those which must be contracted
in any rewrite sequence to normal form [HL91a, HLI1b]. To aid in finding needed redexes, they devised the
notions of sequentiality and strong sequentiality. Klop and Middeldorp provide a quite readable discussion
of strong sequentiality [KM91].

Barendregt, Kennaway, Klop, and Sleep raised the idea of needed redexes to the A-calculus [BKKS87].
Glauert, Khasidashvili, Nocker, and Middeldorp have all written about “normalization” to sets of terms
that are not exactly normal forms [GK, N6c94, Mid97]. Van Raamsdonk showed that the outermost-fair
(multistep) strategy is normalizing for some HORS’s [vR96]. Kennaway, Antoy, and Middeldorp have devised
1-step normalizing rewrite strategies for “non-sequential” systems [Ken89, AM96]. Sekar and Ramakrishnan
have another approach to normalization [SR93].

1.4 Overview

Section 3 defines combinatory reduction systems (CRSs). Section 4 defines labelling for CRSs, from which
we obtain descendants, residuals, developments, and Hyland/Wadsworth labelling for ensuring termination.
Section 5 introduces good redex ordering functions which define standard reduction and yield normalizing
reduction strategies. Section 6 shows how to obtain good redex ordering functions from top-down, no-
lookahead, redex-directed subterm ordering functions. Section 7 shows how to automatically obtain sets
of values and evaluation contexts directly from the reduction rules for the special case ofconstructor system
CRSs. It also presents a specialized form of the standardization theorem that is more relevant to programming
language semantics than is the classical theorem of Curry and Feys. In a companion paper [MWO00], the
results developed in this paper are applied to two programming calculi.

2 Mathematical Preliminaries

Most of the notation presented in this subsection is quite standard and is given here only to avoid ambiguities
over minor differences in usage. However, some of the notation here is new.

Abbreviations for Sequences The notation @ abbreviates the notation ai,as, - where the number of
items is unspecified or clear from the context. The notation @™ abbreviates the notation ay, ... ,ay,.

Binary Relations A binary relation R is any set of pairs. Let R range over binary relations. The
statements R(a,b) and a R b mean the same as (z,y) € R and the expression R ! denotes the relation
{(b,a) ]| (a,b) € R}. A relation R is transitive iff R(a,b) and R(b,c) implies R(a,c). A relation R is anti-
symmetric iff R(a,b) and R(b,a) implies a = b. A relation R is reflezive on some set S iff R(a,a) for every
a € S. A relation R is irreflexive iff R(a,b) implies a # b. A relation R is well founded iff there is no infinite



sequence ap, dz, az, ..., such that R(a;,a;41) for all i > 1.1 A relation R is finitely branching iff {b | R(a,b) }
is finite for all a.

Functions A function f is a binary relation such that if (a,b) € f and (a,c) € f then b = c¢. In this
case, we write the pairs in f in the form (a — b). Given a function f and a value a, if a value b exists
such that (a — b) € f, then f(a) denotes the value b, else f(a) is undefined. The domain of definition of
a function f is DomDef(f) = {a | (a — b) € f} and the range of f is Ran(f) = {b| (a—b) € f}. The
assertion f :S; — Sy holds whenever DomDef(f) C S; and Ran(f) C Sa, in which case we can call S; and
S respectively a domain and a codomain of f. A function f is total w.r.t. a domain S iff DomDef(f) = S.
Given set S, if S C DomDef(f), then f(S) = { f(a) | a € S}, otherwise f(S) is undefined. The restriction
of a function f to a set S is the new function f | S = {(a—b) | (a = b) € f,a € S}. The composition of
functions f and g, notation f o g, is the function such that (f o g)(x) = f(g(x)). The n-fold composition
of a function f is the function f™ such that f"(a) = f(f"'(a)) if n > 0 and f%(a) = a. The expression
fla — b] denotes the function (f\ {(a—¢) | f(a) =c})U{(a— b)}.

Orders An order O is a transitive and anti-symmetric binary relation. An order O is a partial order
on set S iff O is reflexive on S. An order O is a total order on set S iff O is a partial order on S and
O(a,b) or O(b,a) for every a,b € S. When we use a symbol for a partial order like < or < or <, possibly
superscripted or subscripted, the removal of the bottom line, e.g., <, flipping the symbol, e.g., >, and
slashing the symbol, e.g., £, have the usual meaning. The set of minimal elements of a set S w.r.t. an order
OisminpS={a|lacs, fbe S.O(b,a) and b # a}. If the context guarantees that minp S = {a} will be
a singleton set, we may freely use minp S as the value a.

Strict Orders An order O is strict iff O is irreflexive. A strict partial order is any strict order. An order
O is a strict total order on set S iff O is strict and O(a,b), O(b,a), or a = b for every a,b € S. (Following
an unfortunate tradition, a strict partial order is not a partial order and a strict total order is not a total
order.)

Sequences The expression (aj,as,...) is the sequence of a;, as, ... treated as a single object. The
expression () denotes the 0-length sequence. Given a set S, the expression S™ denotes the set of sequences
{(@") | {a*} € S}. Given sequences x1 = (@") and x2 = (b1, ba,...) where the first sequence is finite, the
expression 1 - x2 (the concatenation of x; and x2) denotes the sequence (@™, by, bo,...). Given a sequence
X, the expression |y| evaluates to the number of elements in x if x is finite and evaluates to w if x is infinite.
We consider only countable sequences. If a sequence (a, as,...) is used in a context requiring a set, we treat
it as the set {a1,as,...} (where duplicates have the same effect as a single occurrence). We write [a1, az, . . ]
for a sequence that has no duplicates, i.e., where a; # a; if i # j.

Relations and Orders from Sequences Given a sequence x = (ai,as,...), the statement a; <, a;
holds iff ¢ < j. If x is a sequence with no duplicates, i.e., it can be written as x = [a1,a2,...], then <, is a
strict total order on the set of elements of y. In this case, we may refer to the sequence x as a strict total
order.

Lexicographic Order If O is a strict order, then its lexicographic extension Ojex is the strict order on
sequences such that Ojex(x1,x2) iff there exists some common prefix x such that x1 = x - X1, X2 = X - X5,
and either x| = () # x5 or xj = (a,...), x5 = (b,...), and O(a,b). Observe that if O is a strict total order,
then Ojex is a strict total order. Let minjeyx stand for min., .

Naming Conventions When using symbols to range over various kinds of entities, we follow the following
conventions:

Mdeally, this notion would say that ® has no infinite descending chains. But which direction is descending, to the left or
to the right? This differs between relations, e.g., < descends to the left and > descends to the right. Because associating a
direction for “descent” with each relation seems too painful, we follow Baader and Nipkow [BN98, p. 14] in stating that descent
is to the right. Some others have chosen that descent is to the left, e.g., Taylor [Tay99, p. 97].



a,b,c, X arbitrary entity c label combining function
d label decrementing function f function

i,7,k,l,m,n natural number P, q path

r reduction rule s,t metaterm

u, v term w preterm

z,Y,2 term variable c context

E evaluation context F,G,H,I function symbol

F piece of evaluation context LM label set

M,N term of A\, or AC™& @) order

P label predicate P set, of paths

R set of reduction rules R renaming of metavariables
S set V value (restricted term of A, or A1)
VA CRS metavariable L labelling scheme

R redex ordering function R binary relation

a, B label y subterm ordering

) subterm ordering or “wrong” X sequence

0 labelling v valuation

p redex ordering o reduction sequence

r subterm ordering function A redex occurrence

by combinatory reduction system

3 Combinatory Reduction Systems

This section defines combinatory reduction systems (CRSs). We use the functional presentation of combina-
tory reduction systems [KvOvR93] rather than the original applicative presentation [Klo80]. Both ways of
presenting CRSs have the same expressiveness. They differ in minor ways such as the number of “garbage
terms” that must be ignored and how to determine the head symbol of a redex. We find it much easier to
rigorously prove theorems using the functional CRS presentation.

For those familiar with CRSs, the non-standard bits are (1) the definition of the tree of a term, (2) the
definition of subterm occurrence, (3) the definition of valuation, (4) the restriction requiring reduction rules
to be fully extended, and (5) some notation for reduction sequences.

3.1 Basic CRS Definitions
Alphabet The alphabet used in constructing the preterms of a CRS consists of the following:
1. The countably infinite set Fun of function symbols. Let F', G range over Fun.
2. The countably infinite set Var of (ordinary) wvariables. Let x, y, z range over Var.
3. The countably infinite set MVar of metavariables. Let Z range over MVar.
4. The symbols “(”, “)”, “[”, “|”, “O0” and “,”.

Each function symbol F' or metavariable Z has a fixed arity, written Arity(F') or Arity(Z). There are an
infinite number of functions symbols and metavariables of each arity. The arity will often be indicated by
writing F(" or Z(™ in a statement, which is equivalent to writing merely F or Z and adding the side
condition that Arity(F) = n or Arity(Z) = n. The arity will usually be obvious. Ordinary variables are
considered to have arity 0. Let <™V be some fixed strict total order on MVar such that >™V is well founded.

Preterms The set PTer of preterms is the smallest set satisfying the following conditions. Let w range
over preterms.
1. If © € Var, then x € PTer.

2. If ¢ € Var and w € PTer, then [z]Jw € PTer.



3. If F € Fun and {@"} C PTer, then F (") € PTer.
4. If Z") € MVar and {w"} C PTer, then Z(«#") € PTer.
5. O € PTer.

All free occurrences of « in w are bound in [z]w. If X(©) € Fun UMVar, then the preterm X () may (and
usually will) be written as just X. Below, the sets of contexts, metaterms, and terms will be defined as
subsets of PTer.

Paths The set P of paths is the set of sequences over N (the natural numbers). We generally write a path
as ig - ...- i, rather than (ip,...,4,). In a context requiring a path, the number 7 is implicitly coerced to
the 1-length path (i). Let p, ¢ range over paths, let P range over sets of paths, and let € denote the 0-length
path. The prefiz partial order on paths is the order < such that p < g (“p is a prefix of ¢”) iff there exists a
path p' such that ¢ = p-p'. The statement p | ¢ (“p is incomparable with ¢”) means p £ ¢ and ¢ £ p.

Tree of a Preterm The tree of a preterm w is an alternate representation of the essential information
in w. The function Tree is the least-defined partial function from PTer to P to Fun U Var U MVar U
{[X]| X € VarU{e} } UP U {0} such that:

1. Tree(z) = {e — z}.

] if p =  and 3g. (Tree(w)(q) = O and 3¢’ < g. Tree(w)(¢') = [¢]),
[ if p =€ and Ag. (Tree(w)(¢) = O and A¢’ < q. Tree(w)(q') = [z]),
2. Tree([e]w)(p) = Tree(w)(q) if p=1-q and Tree(w)(q) # =z,
D if p=1-q and Tree(w)(q) = x.
3. For X(™ ¢ Fun U MVar,
X if p=cg,

Tree (X (a™)) (p) = {

Tree(w;)(q) ifp=i-gand1<i<n.

4. Tree(O) = {e — O}.

The skeleton of a preterm w is Skel(w) = DomDef(Tree(w)). A position p is bound at g in w, written
BindPos(w,p) = ¢, iff p= ¢ -p" and Tree(w)(q) = [X] for some X € Var U {e} and Tree(w)(p) = p'.
Here are three examples of the trees of preterms:

Preterm w:  Q(A([2]Z1(2)), Z2)  [zllyly  [2]F([z]H(z,2), [2][y]G(T, 7))

@ |

/\ F
1 o o0
[ ° T
Tree(w): [] [o] | |
| | H [y]
Zy 1 |
| 1.1 1.11.2 @G

1.

1 o o

A binding is recorded in the tree as “[e]” to ignore the name of the bound variable when its name is irrelevant.
A binding is recorded as “[z]” only when there is at least one hole in the scope of the binding such that
filling the hole by a preterm w with free variable x should result in the capture of the free variable by the
binding. Bound variables are represented by the path from the internal node of the binder to the leaf node
of the bound variable. De Bruijn indices or some similar scheme could have been used instead, but it turned
out to be quite convenient to record the actual path from the binder to the variable.



Quotienting by a-Conversion The statement w = w’ (“w and w' are tree-equivalent”) means Tree(w) =
Tree(w'). For preterms without holes, tree-equivalence corresponds exactly to the standard notion of a-
conversion. For preterms with holes, for which a-conversion is not usually defined, tree-equivalence gives the
best possible definition of a-conversion.

Convention 3.1. Throughout the rest of this article, tree-equivalent preterms are considered equal. O

In interpreting this convention, the reader can think of the set PTer as really being a set of trees of the
form given above rather than as a set of syntactic entities. The “=” symbol is used instead of “=" to avoid
confusion with equality on the syntactic entities used to write preterms and equality w.r.t. an equational
theory.

Metaterms, Terms, and Contexts The set MTer of metaterms is the subset of PTer containing all of
the preterms which do not mention O. Let s and ¢t range over metaterms.

The set Ter of all terms is the subset of MTer containing all of the metaterms which do not mention
metavariables. Let v and v range over terms.

The set Ctxt of contexts is the subset of PTer containing all of the preterms which mention “0” (the
hole). Let C range over contexts. Unless otherwise specified, a context is assumed to have exactly one hole.
The arity of a context is the number of holes in the context. Given a context C, its arity n (respectively
the position p of its unique hole if it has only one) may be indicated by writing C(™ (respectively C?)
in a statement, which is equivalent to writing merely C' and adding the side condition that Arity(C) = n
(respectively Arity(C') = 1 and Tree(C)(p) = O). If Arity(C) # n, then C[i"] is undefined, otherwise C[w™]
denotes the result of replacing all of the occurrences of O in C' by wy, ..., w, in order from left-to-right,
possibly capturing free variables of w.

Variables The set of metavariables occurring in a preterm w is MV(w) = Ran(Tree(w)) N MVar. The
statement DMV (w,w') (“w and w’ have disjoint metavariables”) holds iff MV (w) N MV (w') = @. For a set
of preterms S, the statement DMV (S) holds iff DMV (w,w’) holds for every w,w’ € S such that w Z w'.
The set of (ordinary) variables occurring free in a preterm w is FV(w) = Ran(Tree(w)) N Var.

Subterms and Subterm Occurrences A preterm w' is a subterm of a preterm w, written w' < w, iff
there is a context C such that w = C[w']. Quite different from a subterm, a subterm occurrence is specified
by its position. If p € Skel(w), then w.p denotes the subterm occurrence in w at position p. We write
wi.p1 = we.p2 to mean that w; = we and p; = po. When the context of discussion makes the preterm w
obvious, p will sometimes stand for w.p.

REMARK 3.2. If w = CP[w'], some researchers will use w’ to stand for subterm occurrence w.p. We avoid
this because it can be ambiguous in two ways: (1) there may be another position ¢ # p and context C{ such
that w = C[w'] and (2) there may be another context C¥ and metaterm w' such that w = C¥[w"], where
w' and w' differ only in the names of free variables which are bound by C? and C%. O

Valuation A wvaluation is a function v from MVar U Var to MTer such that for each X € DomDef(v) of

arity n, the metaterm v(X) mentions only metavariables in the distinguished set {ZAgo), e ,ZA%O)}. (These
distinguished metavariables play the part of the parameters of substitutes as used in other formulations of
CRSs [Kah94].) Given valuation v, let FV(v) = DomDef(v) U U xepomper) FV (X)) A valuation for
metaterm s is a valuation v such that DomDef(r) D MV(s). The application v(s) of a valuation to a
metaterm is the term »'(s) where v’ is the function from MTer to Ter defined as follows.

1. V(2) = x if v(x) is undefined,
’ ~ | v(z) otherwise.

2. V([z]t) = [2'V'(¢') where [z]t = [2']t' and =’ ¢ FV(v). We can always find such an 2’ and t' by
a-conversion and it does not matter which ones we use.

3. V(F(3) = F(V'(s1),... .0 (sn)).



4. V(Z(5) = v"(1(Z)) where v = { 2" s v/(s;) [L<i<n}.

For compatibility with traditional substitution notation, let ¢t[Xi:=s1,...,X,:=s,] stand for v(t) where
v=A{X1—s1,...,X, = sp}

REMARK 3.3. Our definition of valuation differs from earlier definitions (e.g., [Klo80] and [KvOvR93]) in
that (1) it uses a different (but equivalent) mechanism to handle the replacement of metavariables of arity
greater than 0 and (2) it also allows replacing ordinary variables because it is needed in more situations. O

Reduction Rule A pattern is a metaterm s such that any metavariable Z(™) occurs in s only in the form
Z(Z™) where 1, ..., x, are n distinct (ordinary) variables. A reduction rule r is a pair s — t of metaterms
satisfying the following conditions.

1. The metaterm s is a pattern.
2. The metaterm s is of the form F(5™) for some function symbol F.

3. Both s and ¢ are closed, i.e., in s and ¢ each (ordinary) variable z occurs in the scope of a matching
binder [z].

4. Any metavariable which occurs in ¢ also occurs in s.

For r = s — t, let LHS(r) = s (the left-hand side) and RHS(r) =t (the right-hand side).
A position p is internal in pattern s iff p is the position in s of a function symbol, a binder, or an ordinary
variable which is not a child of a metavariable. Formally, this is written p € Int(s) and defined as follows.

Int(s) = {p| Tree(s)(p) € Fun U {[e]} }
U {p| Tree(s)(p) € PU Var, (p =€ or (p=q-i and Tree(s)(q) ¢ MVar)) }

This notion is extended to reduction rules so that for rule r = s — ¢ it holds that Int(r) = Int(s) and
position p is r-internal iff p is internal in s.

Rules Differing Only by Metavariable Names Two metaterms s; and sy are the same up to metavari-
able renaming, written s; ~ so, iff o is the result of renaming the metavariables in s; in a one-to-one manner.
For metaterms that are the same up to metavariable renaming, we will define a strict total order to support
the purpose of arbitrarily choosing one of them. Let s; « s hold iff s; ~ sy and (Z) < (Z'y where (Z)
and (Z') are the sequences of metavariables occurring respectively in s; and s», in the order of occurrence
from left to right.

We extend these notions to reduction rules as follows. Let F®) be some fixed function symbol. Let
r=s — tand r = s — t be reduction rules. Then r ~ r' iff F(s,t) ~ F(s',t') and r <« " iff
F(s,t) 4 F(s',1"). Let LeastUpToRenaming(r) = ming{r' | r =~ r' }.

Reduction Relation Let r be a reduction rule s — ¢, v a valuation for s, C? a term context, and u and

v terms. If u = CP[v(s)] and v = CP[v(t)], then define the following.

1. The term v(s) is an r-redezx term and v(t) is its r-contractum term.
2. The subterm/rule pair A = (u.p,r) is a redex (occurrence).

3. The term u reduces to its reduct v by contracting A, written u 25 v.
4. The triple u 25 v, also written (u, A, v), is a reduction step.

5. Equivalent variations indicating the rule r are u 2, v and u 2, v.

If R is a set of reduction rules, u Am v means u An v for some r € R. For X which is either a rule r or a
rule set R, we write ©u —x v to mean u EXN x v for some unspecified A. The transitive, reflexive closure
of —rx is —»x. A term u is in normal form w.r.t. rule set R, written R-nf(u), iff there is no term v such
that u —g v. A term u has R-normal form v, written u 255 v, iff w —» 5 v and R-nf(v). If A = (u.p,r),
A" = (u.q,r"), and R is a relation on paths, then A £ A" iff p R q. The equational theory of R, written =g,
is the least equivalence relation on Ter containing — .



Reduction Sequence A reduction sequence o is an alternating sequence of terms and redex occurrences
beginning with a term such that (1) every 3-element subsequence of the form (u,A,v) is a valid reduction
step and (2) o either ends with a term or is infinite. We write 0 = u —» v to indicate both the initial
and final term and ¢ = u —» --- to indicate only the initial term. The length of a reduction sequence,
written |o|, is the number of reduction steps it contains (w for infinite sequences). The expression o[i..j] for
0 <i < j < |o| denotes the subsequence of ¢ starting with the ith term (where terms and steps are both
numbered starting with 0) and ending with the jth term and of[i..] denotes the suffix starting with the ith
term. Let o[i] be the ith term in 0. We write 0 ~ ¢’ iff o and o' are coinitial and cofinal, i.e., 0] = o’'[0]
and of|o|] = o'[|0’|]. Given o = (ug, Ao, u1, A1, us,...) where A; = (u;.p;,7;), we will sometimes write this
as o =wug 2, ug 5, uz---. Given o = (... ,u) and ¢’ = (u,...), their concatenation oxo’is (... ,u,...).
Given rule set R, a reduction sequence o is an R-reduction sequence iff the rule of every redex occurrence
in o belongs to R.

Combinatory Reduction System A combinatory reduction system (CRS) X is specified by a set of
terms Ter(X) and a set of reduction rules Red(X) (sometimes called rewrite rules). The set of terms Ter(X)
is some subset of Ter which must be closed under the reduction relation —geq(x), i-e., if 4 —Rreq(z) v
and u € Ter(X) then v € Ter(X).? In contexts in which a set of rules is required, we may use ¥ to
stand for Red(X), but when forming a reduction relation we restrict it to terms in Ter(X¥), e.g., —s =
{(w,v) | 4 —>Req(s) v and u,v € Ter(¥) }. The equational theory =y is similarly restricted to Ter(X). This
is the only way the restriction to terms in Ter(X) affects the reduction relation.

Strong Normalization A term wu is strongly normalizing (SN) w.r.t. a rule set R, written R-SN(u),
iff there is no infinite R-reduction sequence ¢ with initial term w. A metaterm s such that MV(s) =

{Zl(il),... ,Z,(f")} is strongly R-normalizing, written R-SN(s), iff the statement R-SN(v(s)) holds where
V= {Z](.”) — F].(”)(Zl, ... ,Zij) |1<j<n}and F™ are fresh function symbols of appropriate arities. For
a valuation v it holds that X-SN(v) iff R-SN(s) for every metaterm s € Ran(v). A CRS X is strongly
normalizing, written SN(X), iff £-SN(u) for every u € Ter(X).

3.2 Restrictions on CRSs

Fully Extended A pattern s is fully extended [HP99, vR96, Def. 4.2.51] iff for any metavariable occurrence
Z(Z) in s, the sequence & includes as many variables as possible, i.e., for each binding of some variable z
whose scope includes the metavariable occurrence, x is one of Z. A reduction rule s — ¢ is fully extended iff
s is fully extended. A CRS X is fully extended iff each reduction rule r € Red(X) is fully extended.

Convention 3.4. Throughout the rest of this article, reduction rules (and therefore also CRSs) are restricted
to be fully extended. O

REMARK 3.5. Requiring reduction rules to be fully extended is non-standard. Without this requirement,
contracting an erasing redex occurrence at position p can create a redex occurrence for rule r at position ¢
even when ¢ is above p and p # ¢ - ¢’ for any ¢’ € Int(r). For example, applying the rule F/(Z) — G to the
term H ([z]F(x)) creates a redex of the non-fully-extended rule H([z]Z) — I. Our proof for theorem 6.4,
which extends a proof of Klop [Klo80], fails in the presence of non-fully-extended rules. This problem seems
related to the fact that the outermost-fair (multistep) reduction strategy is not normalizing for higher-order
rewriting systems with non-fully-extended rules [vR96, Chap. 6.2]. O

Constructor Systems A CRS X is a constructor CRS iff there exists a set FCon(X) of constructors and
a set FDes(X) of destructors® such that both of the following conditions hold.

2Previous definitions of a CRS required giving for a CRS ¥ some fixed set S of function symbols and using all the terms that
can be generated with those function symbols, i.e., setting Ter(X) = { u | w € Ter,Fun(u) C S } where Fun(u) = Ran(Tree(u))N
Fun. Further restricting the set of terms was called a substructure CRS by Klop [Klo80] and [KvOvR93]. Our definition makes
this the default case, because in practice it is nearly always necessary to do so.

3These are sometimes called functions, but we avoid that terminology due to the ambiguity with “function symbol.”



1. The constructors and destructors partition the function symbols, i.e., FCon(X¥) U FDes(X) = Fun and
FCon(X) N FDes(¥) = @.

2. For any rule r € Red(X), the root function symbol of LHS(r) is a destructor and any other function
symbol in LHS(r) is a constructor. Formally, if r € Red(X) and Tree(LHS(r))(p) = F, then p = ¢ =
F € FDes(X) and p # € = F € FCon(X).

Left-Linear Rule A metaterm s is linear iff every metavariable in s occurs in s exactly once. A reduction
rule s — t is left-linear iff s is linear. A set of reduction rules R is left-linear iff every reduction rule r € R
is left-linear.

Ambiguous Rules Given metaterms s and ¢t and position p € Int(t), it is said that s interferes with t at p
iff there exist valuations v and v/ for respectively s and ¢ and a term context C? such that Clv(s)] = v'(t).2
This interference is at the root iff p = €. Distinct reduction rules s — ¢ and s’ — t' are ambiguous (sometimes
called overlapping) whenever s and s’ interfere. A reduction rule s — t is ambiguous with itself whenever s
interferes with itself provided the interference is not at the root. A set of reduction rules R is ambiguous iff
there exists an ambiguous pair of rules r,7’ € R (where r and ' may be the same rule).

Orthogonal CRS A CRS ¥ is orthogonal (also called regular) iff the set of reduction rules Red(X) is
left-linear and non-ambiguous.®

Theorem 3.6 (Confluence of Every Orthogonal CRS). If ¥ is orthogonal, u —» 5 v1, and u —»x va,
then there exists u' such that vi —x u' and vy —»x u'. O

Proof. See [Klo80] or [KvOvR93]. O

4 Labelling

This section defines a generic notion of labelling which is instantiated to yield definitions of descendants,
residuals, developments, and Hyland/Wadsworth labelling. The specific instantiations are quite similar to
systems in [Klo80]. Labelling in this article differs from some earlier labelling as described in remark 4.1.
The labelling of a CRS ¥ is a CRS ©*, and labelling preserves orthogonality, thus allowing certain proofs
to be chained, e.g., the proof of lemma 5.6 implicitly uses three levels of labelling.

4.1 Generic Labelling Framework

Labelling Scheme A labelling scheme is given by a quadruple £ = (L, ¢,d, P) which contains:
1. A set of labels L. Let a and § range over L.
2. An associative label combination operator ¢ : (L x L) — L.
3. A label decrementing operator d : L — L.
4. A predicate on labels P : L — {true, false}.

4 This definition is equivalent to the definitions of [Klo80] and [KvOvR93] for metaterms which can be LHS’s of reduction
rules, but differs in how it is stated. Note that the definition of interference would be the same even without our restriction to
fully extended reduction rules.

5The definition given here considers valuations producing terms that are outside of Ter(X) when determining the ambiguity
of Red(X). The definition could be changed to avoid considering such garbage terms, but doing this without breaking something
would make the definition very messy.
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Preterm Labelling We take the label set L to be a subset of Fun containing 1-ary function symbols.
Given a label sequence @" such that {@"} C L, let w'® = a,(--- (az(ai(w)))---), sometimes written as
(-+ (wo) .- )*. A preterm w is unlabelled w.r.t. L iff w does not mention any symbols in L. Given an
unlabelled preterm w, an L-labelling (a.k.a. L-labelling) 8 for w is a total function from Skel(w) to ey L*-
A labelling 6 is complete iff () ¢ Ran(f). The expression .q denotes the function such that (6.q)(p) = 6(¢-p).
If A is a labelling for w, then w’ is defined as follows.

1. X% = X% for X € Varu {O}.

2. (fzJw)’ = (2] ()",
3. (X@)! = (X(wi®,... ,w."")" for X € (FunUMVar) — L.

Observe that labelling fails for already-labelled preterms. Observe also that labelling of metaterms, terms,
and contexts produces respectively metaterms, terms, and contexts, i.e., the sets MTer, Ter, and Ctxt are
closed under the operation of labelling.

Rule Labelling Let £ = (L,c¢,d, P) be a labelling scheme. A LHS labelling for a rule r = s — t or a
pattern s is a labelling 6 for s where 6(p) # () iff p € Int(s) and 6(¢) = (a) for some « (i.e., 6(¢) is a sequence
of length 1).

Given a LHS labelling @ for r, we construct the corresponding RHS labelling 6 as follows. Extend c to any
arity one or greater by setting c(a) = @ and ¢(a, o/, 8,...) = ¢(c(a,a’), 5,...) and to sequences by c({(&)) =
c(@). Let the degree of 6 be Deg(8) = ¢(c(0(p1)),--- ,c(0(pyn))) where {p"} = {p € DomDef () | |8(p)| > 1}
and p1 <lex *** <lex Pn- Finally, let 8 = { p — (d(Deg(6))) | p € Skel(t) }. Observe that if a occurs in a RHS
labelling, then o € Ran(d).

Given a LHS labelling 6 for  and the corresponding RHS labelling 8, the labelling of the rule r is given
as r? = s — t?. Observe that the result of rule labelling obeys the requirements for a rule, i.e., no free
variables, function symbol at root of LHS, metavariables in RHS occur in LHS, and metavariables in LHS
have only distinct variables as arguments. A rule r = s — t is unlabelled iff both s and ¢ are unlabelled.
Define the degree of 7/ to be Deg(r’) = Deg(#). For a redex occurrence A = (u.p,r?) let Deg(A) = Deg().
For redex terms let Deg(v(LHS(r?))) = Deg() (assuming the rule can be unambiguously determined).

CRS Labelling The labelling of a CRS goes as follows. Let ¥ be a CRS and let £ = (L,¢,d, P) be a
labelling scheme. Assume that the members of Ter(X) and Red(X) are unlabelled w.r.t. L, if necessary by
renaming all labels (members of L) to fresh names throughout £. Assume if necessary that there are an
infinite number of function symbols unused by ¥. Then X* is the entity where:

1. Ter(%£) = {u’? | u € Ter(¥) and 6 is a complete labelling for u }.
2. Red(X%) = {r? | r € Red(X), 6 is a LHS labelling for r, and P(Deg(6)) }.

It will be shown in theorem 4.8 that ¥ is in fact a CRS, i.e., its set of terms is closed under reduction.

REMARK 4.1 (COMPARISON WITH OTHER APPROACHES TO LABELLING). The approach to labelling used
in this paper generalizes methods of Klop [Klo80]. Klop’s various presentations of labelled CRS’s were not
unified in this manner, although all were in a style resembling the result of our method instantiated with
particular labelling schemes.

Any method which labels positions by inserting additional function symbols must somehow deal with the
accumulation of labels through reduction. In his specific labelled CRS’s, Klop made the error of identifying
(u®)? with we(@8_ This is an error because it either (1) contradicts the claim that X< is a CRS or (2)
requires extra reduction rules (which were not supplied) to reduce (u®)” to u®®#). To avoid this error,
we do not identify (u“)ﬁ with u°(®%), Some researchers (e.g., van Oostrom [vO97]) have avoided this error
by adding the extra rules. Although this approach can work, we did not choose it because it prevents the
one-to-one correspondence between reduction steps in ¥ and Y% which is obtained below as theorem 4.6.
Although our labelled systems treat u(® and u°(® in essentially the same way, the underlying term could
be different.
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A difference from earlier labelling approaches is that our approach works for both singleton-redex rules
and collapsing rules. A singleton-redex rule is a rule s — t where s has exactly one function symbol and no
bindings, e.g., F(Z) - Z or G — H. If labels are fresh function symbols inserted between other function
symbols, then the obvious simple labelling approach will not associate any label with a singleton redex,
because it does not have two distinct symbols or binders to put a label between. The key point of our
labelling method that handles singleton-redex rules is the requirement that every labelling of a rule r matches
at least one label symbol above the root symbol of the LHS of r.

A rule s — t is collapsing iff t contains no function symbols or binders. An earlier labelling scheme by
Kenneway [?] failed to work for collapsing rules. If a new redex occurrence A’ is created by the contraction
of a redex A of a collapsing rule, then it is essential that at least one label associated with A’ is derived
from the labels associated with A. In our approach, if a redex is created by a collapsing rule, then at least
one of these two cases must hold:

1. Part of the redex must come from the surrounding context and part must come from the substitution
for a metavariable Z in t.

2. Part of the redex must come from an occurrence of a metavariable Z; in ¢t and part must come from
a distinct occurrence of a metavariable Z> in ¢t. (The two metavariables may be the same, but the
occurrences must be different.)

In both cases it can be checked that our labelling scheme puts a label in a place such that any labelled redex
created by the labelled rule must contain at least one copy of the label. O

4.2 Basic Properties of Labelling

Term/Labelling Decomposition For label set L and preterm w, if w = w'? for L-labelling # and
unlabelled w', then (w',0) is a term/labelling decomposition of w w.r.t. L. The following definitions support
obtaining term/labelling decompositions. Let ¢ - 6 denote the least defined function such that (¢-6)(q-p) =
0(p). Let TLD be the least-defined function satisfying the following.

1. TLDL(an(- - (a1 (X)) -++)) = (X, {e = (@")}) for X € VarU {0O}.

(

2. TLDg (an(- - - (ca([z]w)) ---)) = ([z]w’, {e = (@")} U1 - 0) where TLD(w) = (w', ).

3. TLD (an(- -+ (ar (X (@) -+)) = (X (@), {€ = (@)} U (Uy<sp 8 - 6)) where X ¢ L and
TLDy (w;) = (w},0;) for 1 <i <n.

Lemma 4.2 (Unique Term/Labelling Decomposition). For any preterm w and label set L it holds
that TLD, (w) = (w', 8) is the unique term/labelling decomposition of w w.r.t. L. O

Proof. Induction on the size of w shows that w = w'’ where 6 is an L-labelling iff TLDL(w) = (w',6).
This is sufficient to see that TLD [, (w) is defined, is a term/labelling decomposition of w w.r.t. L, and is the
unique such decomposition. O

Label Erasure The label erasure of a preterm w w.r.t. the label set L of a labelling scheme £, is ||Jw||L =
lwlle = w'" (or ||w|| if L is clear) where TLD(w) = (w',#). For a subterm occurrence s.p where s = C?[t],
let ||s.p|l| = [|sll.¢ where ||C?|| = C'?.  For a valuation v, define ||v|| so that ||v||(X) = [|[v(X)]| for
X € Var U MVar. Label erasure is extended to other entities (e.g., reduction rules, redex occurrences,
reduction sequences, etc.) componentwise.

Lemma 4.3 (Distribution of Label Erasure). Given any label set L, metaterm s, context C, and valu-
ation v for s, both of the following statements hold:

LACs]lle = 1CelIslle]-

2. v(s)lle = vl (llsll)- O
Proof.
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1. By induction on the size of C.

2. Let MaxMVArity(¢t) = max{0} U Arity(MV(¢)). By induction on s in the order O such that O(t,t) iff
MaxMVArity(t1) < MaxMVArity(¢2) or MaxMVArity(t;) = MaxMVArity(t2) and ¢; is smaller than
t2. By cases on the shape of s. Let v/ = ||v]|..

(a) Case s = x. Then ||s||, = s. By cases on whether v(z) is defined.

i. Case v(x) is undefined. Then v'(z) is also undefined. It can be checked that ||v(s)||r = v(s) =
s=ux = [|sll = v'(I[s]l)-

ii. Case v(z) = u. Then ||v(s)|lL = ||u|lL- Also, ||s|l. = z. Thus, v'(||s|l) = v'(z) = ||u|lL. Case
done.

(b) Case s = [z]t. By a-conversion assume that z ¢ FV(Ran(v)) UDomDef (v). So v(s) = [z]v(t). So
lv(s)lle = [2]l[v(®)]l. Also, [|sll. = [«]lltll- So v'(llsll) = [«]'([|¢]l). By induction hypothesis,
lv(®)|l = v'(J|t]lr). This is sufficient to finish this case.

(c) Case s = F(i) where F' ¢ L. By reasoning like the previous case, only simpler, because there is
no need to consider a-conversion.

(d) Case s = a(t) where @ € L. Then v(s) = a(v(t)). Then ||v(s)|L = ||v(#)|l- Also, ||s|lL = ||t/
So v'(||sllt) = v'(||t|lr). By induction hypothesis, ||[v(¢)|l. = v'(||t]|p). This is enough to finish this
case.

(e) Case s = Z(i"). By cases on Arity(Z).

i. Case n = 0. Then v(s) = v(Z). Also, ||s|L = Z(). Then ||lv(s)lk = |[¥(2)|L = v'(2)
V' (Z()) =v'(||s||.). Case done.

ii. Case n > 1. Let s’ = v(Z). Observe that MaxMVArity(s') = 0 < n < MaxMVArity(s).
By definition, v(s) = v''(s') where v = {Z; —» v(t;) |1 <i<n}. Let v = ||v'||,.. By
induction hypothesis, ||v"(s')[l. = v"([|s'|l.). So [[v(s)|l. = v"'(||s"[l)- It holds that [|s||, =
Z(Italles - -5 lltnlle)- Also, v'(Z) = [|s[|l.. Sov'(|lslle) = v ([[s"llc) where ™" = { Zi = v/([[t:l|) | 1 < i < n}.
By induction hypothesis, ||[v(t;)|l = v'(||ti]le) for 1 < i < n. Thus, v = »"". This is suffi-
cient to finish the case. O

Subterm Occurrence Labelling For a subterm occurrence u.p where 6 is an L-labelling for u and
L ={(L,c,d,P), let (u.p)’ = u’.q where ||[u’.q|| = u.p and Tree(u?)(q) ¢ L.

Context/Subterm Labelling Decomposition Given a labelled preterm C’”[w]a, it is desirable to be
able to decompose the labelling 6 into a portion applied to C' and a separate portion applied to w. Given a
labelling 6, a path p, and a natural number 4, let . , ; and 65 j, ; be the least-defined functions such that

B (g) = 6(q) if p £ q,

ob (Qig1,.-.,ap) ifp=gq,0(p)=(d"%), and 0 < 1.
6(p-q if g #e,

o) = {70

(a1, ... ,a5) ifqg=¢, 8(p) =(a@"), and 0 <.

Lemma 4.4. Let w = CP[w'] and let § be an L-labelling for w. Then for any context CY and preterm
where ||C|| = C and ||w|| = w, the following equivalence holds:

w? = Ci].
(3

There exists an i such that C = C%wi and b = w'’. O
Proof. By induction on the size of C'. By cases on the shape of C.

1. Suppose C = O. Then p =€ and w = w'. Let 0(e) = (@"). Let w” = w?[*>0l. The two directions are
proved separately.

13



(1) Suppose w’ = w'’ = C[w]. It holds that w’ = ay,(--- (ay (")) ---). Because ||C|| = C = O, it
must be the case that C is of the form B, (- -- (81(0)) - - -) for some labels § € L. It can be shown

- ~

that () = (@ip1,... ,an) where 0 < i < n. Thus, C = C%-«i = C%»i. It can be checked that
W= a;(- - (o (w'")) -+ -). Thus, 0 = wlei = wlori,

() Suppose there is an i such that ¢ = CP»i = CP«i and w = w’»i = wh<i. Then C =
n (- (g1 (D)) ) and ® = q;(- - (@ (w")) - - -). Then C[w] = w"‘® = w?.

2. Suppose C' = X (3", C’,ﬁ”) for some X € Fun U MVar, some context C, and some metaterms § and .

v

Let C' = X (5,0,1). Let w = C[w']. Tt holds that w = C[w].

Let k= n+1and let § = 6.k. Observe that § is an L-labelling for w. Let 0 = [k — ()]. Observe that
w? = Cw?).

The two directions are proved separately.

(1) Suppose w? = Clw)].

()
3. Suppose C' = [z]C for some variable x and context C. This is proved similarly to the previous case,
except that the proof is simpler. O

Pattern/Valuation Labelling Decomposition Given an instantiated and then labelled linear pattern

1/(5)0, it is desirable to be able to decompose the labelling 6 into a portion applied to the pattern s and
portions applied to each metaterm in the range of the valuation v. Given a linear pattern s, a valuation
v for s, and a labelling 6 for v(s), define the labelling 65 and the labelled valuation v, g as follows.

0s ={p—6(p) | p €Int(s) }U{p— () | p € Skel(s) — Int(s) }
vsg={Zw (V(Z))e'q | Z € MV (s), Tree(s)(q) = Z }

Observe that vs g is a function because s is required to be linear.

Lemma 4.5. Let s be a linear pattern, let v be a valuation for s, and let 0 be a labelling for v(s). Let 6 be

[4

any LHS labelling for s and let U be any valuation for s”. Then the following equivalence holds.

w(s)! =i(s’) <= (0 =wvy and 6 =0,)

Proof. By induction on s, with the base case being where s is of the form Z(Z). O

Theorem 4.6 (Labelled/Unlabelled Reduction Step Correspondence). With respect to labelling scheme
L =(L,c,d,P), the following statements hold:

1. If 0 is a LHS labelling for unlabelled rule v and u 25,6 v, then |ju)| 12l [|v]].

2. Let r be an unlabelled rule, let 6 be a complete L-labelling for u, and let u Ay v. Then there are a
unique LHS labelling 6' for r, a unique term v', and a unique redex A' such that u’ A—I>r9r v’ where
A" = A. Furthermore, v' = v° for some complete L-labelling 6. O

Proof.

1. Let A = (1i.p, r?) and let r = s — t. There exists some context C? such that u = CP[v(s?)]
2y 6 CP[v(t?)] = v. Let C' be the context such that ||CP?|| = C'. By lemma 4.3, it holds that
[ull = [CNIZIsID] = C'llvli(s)] L Clvl@] = ICNIAD] = [loll. Observe that [|All =

(||lw.pll, I7?1]) = (||u|.q,r) is therefore the contracted redex.
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2. First we will make some definitions. Let A = (u.p,r) and r = s — ¢. There exists some C' and v such
that u = CP[u(s)] 2, CP[v(t)] = v. Let ' = (51)s and v/ = Vs (0.p1) Let C'?" = C%r1 and
A" = (u? p',r?"). Recall the definition that ¥ = s — 7,

Now that we have established some definitions, we will first show that the LHS labelling 6’ and redex
A’ together with the term v’ that results from contracting A’ satisfy the desired properties. Then we
will show their uniqueness.

By lemma 4.4, we know that uf = CQC’P’l[(V(S))es’P’l]. Observe that #' is a valid LHS labelling for
s. By lemma 4.5, we know that (v(s))*"' = v/(s%"). Thus, v/ = C'?'[/(s"')]. Thus, we know for
appropriate v’ that u? = C'P'[v/(s?")] &5 o C'P'[v/(t7)] = v'. Tt holds that [|r? || = r. By definition,
|lu®.p'|| = u.p. Thus, ||A’|| = A. By theorem 4.6 part 1, it holds that u 25, ||v’||. Thus, [[o']| =v. We
know that v’ = C'?' [/ (¢7)] = Cl»1lg g, ) (%=»1)+)]. From this it is possible (details omitted) to
construct a L-labelling 6 such that v' = v’ and to show that @ is complete.

We have now shown the existence of the appropriate LHS labelling ', redex A’, and term »'. What
remains to be shown is their uniqueness.

Suppose u’ A—”>r9~ v"" where ||A"]] = A. Let A" = (u’.p",r?"). We know that there exists some C”
and v such that u’ = C"?"["'(s?")]. We know that ||C"'|| = C because ||u’.p"|| = u.p. By lemma 4.4,

we know that C” = C%»i and v"(s") = (v(s))"* for some i. Because 6" is a LHS labelling,
v"(s?") must have exactly one label in outermost position. Thus, i = 1 and therefore C""?" = C'P" and
v'(s?) =v"(s?"). By lemma 4.5, we know that " = 6" and v"" = v'. Thus, A” = A’ and v" =o'. O

Reduction Sequence Labelling A reduction sequence labelling for a reduction sequence o is a pair (£, 0)
of a labelling scheme £ and a complete £-labelling 6 for ¢[0] where o is unlabelled w.r.t. £. The labelling
scheme is omitted when it is obvious. Alternatively, we will refer to € as a L-labelling for o. The labelling
of o by 6, written o, is the unique (by theorem 4.6) reduction sequence such that (¢%)[0] = (o[0])? and
lo?|| = 0. Let R be the set of reduction rules used in ¢?. Observe that if o is a S-reduction sequence, then
o? will be a valid ¥*-reduction sequence iff P(Deg(r)) holds for all r € R.

Lemma 4.7 (Preservation of Internal Positions under Erasure). Let s be a pattern and let v be a
valuation for s. Let p € Int(s) be such that ||v(s).p|| = ||v(s)||.q. Let p be a path such that p < p, p € Int(s),
and Tree(s)(p) ¢ L. Then q € Int(||s]). O

Proof. By induction on the size of s. O

Theorem 4.8 (Properties of Labelled CRS’s). Let ¥ be a CRS and L = (L, ¢,d, P) a labelling scheme.
1. ©% is a CRS.

2. ©£ is orthogonal if ¥ is orthogonal.

Proof.

1. We need to check that Ter(X*) is closed under —Red(s£)- SUppose u A, v where u € Ter(Z%),
A = (u.p,7), and r € Red(Z*). Thus, u = 4’ for some term @ € Ter(X) and some complete L-labelling
0 for 4. Also, r = # where 7 € Red(X) and 6 is a LHS L-labelling for #. By theorem 4.6 part 1, we
know that @ 25, ||lv]| where A = (a.p,#) for some p. Let & = ||v||. Because 7 € Red(E) and ¥ is a
CRS, ¢ € Ter(X). By theorem 4.6 part 2, it holds that r, A, and v are unique and that v = 8% for
some complete L-labelling §. Thus v € Ter(S£).

2. Assume that ¥ is an orthogonal CRS. We must show that Red(X%) is left-linear and non-ambiguous.
It is easy to see that if 6 is a LHS labelling for r, then r? is left-linear iff r is left-linear. Thus, Red (%)
is left-linear.

15



Now we will show that Red(X%) is non-ambiguous. We will suppose that Red(X*) is ambiguous and
derive a contradiction. Suppose for r,7 € Red(X¥) that r and 7' are ambiguous. Let LHS(r) = s
and LHS(r') = s'. W/o.l.o.g., let s’ interfere with s at p. (We assume w/o0.l.o.g. that s’ has the lower
position.) Thus, we know that p € Int(s) and there exist valuations v and v’ and context C? such that
v(s) = CP[V'(s")]. If r =7/, then it must hold that p # e.

It holds that ||v(s)]| = ||CP[v'(s")]|]- Thus by lemma 4.3, |¢||(|sll) = IIC|I[lI#'l|(||s']])]. Let the hole in
[IC|| be at gq. By definition, ||v(s).p|| = ||v(s)||.¢- By lemma 4.7, ¢ € Int(]|s||). Therefore, ||s|| and |||
interfere at ¢. Thus ||r]| and ||r'|| interfere at q.

If ¢ # e or ||r]| # ||I7'||], then this means that ¥ is ambiguous, a contradiction. Suppose ¢ = € and
Il = ||r']. Thus, ||C]| = O. Thus, C' mentions only labels from L and O. If C # O, then s
and s’ have a different number of outermost labels, contradicting the way rules are labelled. Thus,
C =0 Thus, p=-ec Let ||| = ||| =# = 8§ = £ It holds that r = # and r = #* for some
LHS labellings # and 6. Observe that v(s) = u’ for some term u and labelling . It holds that
v(8) = v(s) =uf = v/(s") = v/(5°). By lemma 4.5, 0 = 65 = 6'. Thus, r = r', a contradiction. O

4.3 Labels for Tracing Subterms and Redexes

Tracing A labelling scheme £ = (L,c¢,d, P) is a tracing labelling scheme iff ¢(a,8) = « for o, 8 € L.
Given tracing labelling scheme £ = (L, ¢,d, P) and M C L, let PosLabelln (6, M) = {p | c(8(p)) € M } (i.e.,
the set of all positions labelled by € with labels in the label set M).

The following lemma will establish that tracing labelling schemes are sufficiently well-behaved to be used
for defining the notion of descendant.

Lemma 4.9 (Tracing Sanity). Let £; = (L;,¢;,d;, P;) be a tracing labelling scheme for i € {1,2}. Let
o be a finite reduction sequence. For i € {1,2}, let 8; be an L;-labelling for o. For i € {1,2} and j €
{0,...,|ol}, define 0; ; as the labelling such that 0% [j] = olj]"7. Let M; C L; \ Ran(d;) for i € {1,2}. Let
PosLabelln,, (61, M) C PosLabelln,, (#2, M>). Then for 0 < j < |o| it holds that PosLabelln,, (61 ;, M) C
PosLabelInQ (027]', MQ) . O

Proof. The proof is by induction on j, the index into the reduction sequence o. The base case where j = 0
is trivial because 6; = 6; o for i € {1,2}.

Otherwise, consider the case where 7 > 1. Let £k = j — 1. By induction hypothesis, we know that
PosLabelln,, (61 4, M1) C PosLabelln., (02 x, M2). Let the jth reduction step in ¢ and o% for i € {1,2} be
as follows where r = s — ¢:

olk] = CP[v(s)] ’ 2. CP[v(t)] , = olj]
olk]’* = Oy [vi(s%4)] £ o, OO [vi(t%9)] = o[j]""

We now want to show that PosLabelln,, (61 ;, M1) C PosLabelln,, (62 ;, M>).

Define the predicate LabelPatterny, (u, p, f, ¢, ) to hold iff @ is an L-labelling for u, ||u?.q|| = ||u’.(¢ - 1)|| =
u.p, Tree(u?)(q) = a, and Tree(u?)(q-1) ¢ L.

Suppose ¢ € PosLabelln,, (0 ;, M1). Thus, ¢1(01,;(q)) € Mi. Thus, 61;(q) = («,...) for some a € M.
Thus, there is some ¢; such that LabelPatternr,, (o(j], ¢, 01 ,;,¢1, «). We now show that ¢ € PosLabelln., (6 ;, M>)
by separately considering the possible cases.

1. Suppose ¢; - 1 # p1. It must hold that ¢ # p and that LabelPatternr, (o[k], g, 61 %, ¢1, ), because
nothing involved in making LabelPatterny, (o[j],¢,61,j, ¢1,a) true changed from o[k] to o[j]. Thus,
q € PosLabelln,, (61, M;). By induction hypothesis, ¢ € PosLabelln,, (62, M2). Thus, there exists
some ¢» and some 3 € M, such that LabelPatternr, (o[k], g, 02 k, g2, 3). It must hold that g» - 1 2 po.
Thus, LabelPatternr,, (o[j], g, 02,5, 2, 8). Thus, g € PosLabelln,, (6> ;, M>).

2. Suppose g1-1 = p; or ¢ = p1. By the definition of rule labelling, we know that Tree(tellvi)(e) € Ran(d,).
Thus, Tree(a[j]el'j)(pl) € Ran(d;). Observe that o ¢ Ran(d;) because a € M;. Because a ¢ Ran(d),
we know that ¢; # p;. Because Tree(a[j]al’f)(ql -1) ¢ Ly and Ran(dy) C Ly, we can deduce that
g1 - 1 # p1. Thus, this case is impossible.
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3. Suppose ¢; > p;. First, let the functions f and g, which depend on v; and 9% for i € {1,2}, be the
least defined functions such that

f(i,p’,l):{{l} if Tree(t’"5)(p') ¢ MVar,
{p" | Tree(vi(2)) (") = Z1 } 1fTree(t )( N =2z
glisli - lp) ={py - Py | Py € f(E 0w, 1) for L<m <m}

Because @ € M; C L; \ Ran(dy), by the definition of rule labelling we know that a does not occur

in t’15. Thus, there exist ¢, g1, and ¢, such that ¢1 = p1 - ¢1 - G1, ¢1 € 9(1,41), Tree(telli)((jl) =7,
Tree(v1(Z))(G1) = a, and Tree(v1(Z))(@ - 1) ¢ L. Let ¢, be the path such that Tree(s"1.7)(§;) = Z.
Let g1 = p1 - ¢1 - q1- There exists a ¢ such that LabelPatterny, (o[k], G, 01 k,G1, ). Let ¢ be the path
such that [|s15.¢i|| = s.¢. Let g be the path such that |[v1(Z).qi|| = v(Z).q. It holds that § =
p-¢-q. It holds that ¢ € PosLabelln,, (61, M1). By induction hypothesis, § € PosLabelln,, (62 1, M>).
Thus, there is a ¢» and 8 € M, such that LabelPatterny, (o[k], q, 02k, d2, ). There must exist ¢o
and ¢» such that ¢ = po - §2 - Go, ||s%)f.(}'2|| = s.4, and ||12(Z).¢2|| = v(Z).G. Let ¢» be the path

such that Tree(t%29)(¢) = Z and ||t%25.¢ || = ||t%24.¢||. There must exist ¢o € g(2,¢) such that
1 (t713) 61| = ||va(tP25).42||. Let g2 = p2 - o - G- It must hold that LabelPatterny, (a[4], 0,025, ¢, ).
Thus, ¢ € PosLabelln,, (62,;, M>). O

Descendant, Ancestor Given finite reduction sequence o and labelling (£, ) for o where £ = (L, ¢,d, P)
is a tracing labelling scheme, the tracing relation [o]’ is the relation on subterm occurrences such that
(o[0].p) [o]? (olol].q) holds iff c(8(p)) = c(f'(q)) ¢ Ran(d) where (¢?)[|o]] = (a[|a|])91. This can be
abbreviated as p [o]’ q.

A tracing labelling scheme £ = (L, ¢, d, P) is also a descendant labelling scheme iff L — Ran(d) is infinite.
A descendant labelling for reduction sequence o is a complete L-labelling 6 for o where £ = (L,¢,d, P) is a
descendant labelling scheme, ¢(8(p)) ¢ Ran(d) for all p, and if ¢yeec (0(D)) = Cacec(B(q)) then p = q.

Let ¢ be any choice function such that ¢(o) is a descendant labelling for 0. Then the descendant relation
of a finite reduction sequence o is [o] = [0]?(?). (Lemma 4.10 shows that [o] does not depend on the choice
of ¢ or the labelling scheme used by ¢.) With respect to reduction sequence o, we say that o[k].q is a
descendant of o[j].p (and o[j].p is an ancestor of o[k].q) where j < k iff (o[j].p) [o[j.-k]] (o[k].q)-

L. and 34 An example descendant labelling scheme is as follows. Let A be a countably infinite set
of labels. Let o ¢ A be a distinguished label (meaning “no label”). Let Li.. = AU {0}, Caeee (@, 8) = a,
daeee (@) = 0, and Pu...(@) = true. Let Lac.. = (Lacwe, Caceer Qacses Pacse) and let T4 = Slaese,

Lemma 4.10 (Properties of [o]]). The descendant relation has the following nice properties:

1. Let 0 and ' be descendant labellings for a finite reduction sequence o. Then [o]? = [o]? .

2. w.p [o1 x 02] v.q iff there exists path p' such that u.p Jo1] u'.p" and u'.p' [o2] v.q where u' = 02[0]. O
Proof.

1. Suppose u.p [o]? v.q. Let § be an L-labelling for £ = (L,c,d, P) and let # be an L£'-labelling for
£ =(L',c,d P Let 0°[|o]] = o[jo]]’ and let o¥'[|o|] = o[|o]]” . By the definition of [¢]’, we know
that c((p)) = c¢(8(¢)) = a for some a € L. Let 8 = ¢'(§'(p)). Observe that PosLabelln, (6, {a}) =
PosLabelIn, (¢', {3}). By two applications of lemma 4.9, PosLabelIn, (8, {a}) = PosLabelln, 0", {B}).
Because ¢ € PosLabelln. (8, {a}), it also holds that ¢ € PosLabelln. (#',{}). Thus, ¢ (8'(q)) =
¢ (6'(p)). Thus, u.p [o]” v.q. Repeating this reasoning in the other direction allows us to conclude
that wu.p [0]? v.q iff u.p [o]? v.g, which proves that [o]? = [o]? .

2. Let 09 = 01 * 02. Let (CHO) = ¢)(a,) where £; = (L;, ¢, d;, P;) for i € {0,1,2}. For i € {0,1,2},
for 0 < j < |oy|, let o:%[j] = o3[j]%. Let M; = {c;(8;(p))} and let Q; = PosLabelln,, (91»‘”‘,Mi)
for i € {0,1}. By lemma 4.9, it holds that Qo = Q1. Let My = {a|p € Q1,c2(62(p)) = a}. Let
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Q)2 = PosLabelln,, (02, M3). It holds that @1 = Q2 because 65 is a descendant labelling. Let Q) =
PosLabelln,, (6., M;) for i € {0,2}. By lemma 4.9, it holds that Q) = Q}.

Suppose w.p [oo] v.g. Thus, ¢ € Q) = Q4. Let § = 0‘2‘72|(q). We know that 8 € M,. Thus, there is
some p' such that c2(62(p")) = 8 and p' € Q2. Thus, u.p [o1] u'.p’ and u'.p' [o2] v.q.

Suppose there is some p' such that u.p [o1] v'.p' and u'.p' [o2] v.g. We know immediately that p' €
Q1 = Q2. Let c(62(p')) = B € My. It holds that ¢ € PosLabelln., (%!, {8}) C PosLabelln., (65!, My) =
Q4 = Qf. Thus, u.p [oo] v.q. O

Residual, Created Redex Given 0 = u —» v, the descendant relation [o] is extended into a residual
relation on redex occurrences as follows. We say that (u.p,r) [o] (v.q,r) iff u.(p-q") [o] v.(q-¢") for all
q' € Int(r).® With respect to a reduction sequence o, a redex occurrence (o[k].q,r) is a residual of redex

occurrence (o[j].p,r) where j < k iff (o[k].q,7) [o[j.-k]] (¢[j].p,r). If & contains the reduction step u 25 v
and A’ is a redex occurrence in v, then the (contraction of the) redex occurrence A created the redex
occurrence A’ iff A’ is not a residual of any redex occurrence in wu.

Lemma 4.11. (u.p,r) [o1 * 03] (v.q,7) iff (u.p,r) [o1] (W' .p',7) and (u'.p',7) [o2] (v.q,r) for some path p'
where u' = 03[0]. O

Lemma 4.12. Let 0 = up — u, be a reduction sequence, let n = |o|, and let 6y be an L-labelling for o.
Let 0,, be the labelling such that (0%°)[n] = u,’". Let q; and ¢} be the paths such that u;.q;% = u;%.q} for
i € {0,n}. Then it holds that:
1. uo.qo [0] Un-qn iff (uo?.q}) [o%] (u,’.q,).
2. (uo.qo,7) [o] (tn-Gn,r) iff (wo?.q),r%") [0%] (un’.¢",7"") for some unique LHS labelling 6' where
qgi=4q} -1 forie{0,n}. O
Proof.

1. Let £ =(L,c¢,d, P). The proof also uses L,.... Assume w/o.l.o.g. that LN L,... = &.

We proceed by induction on n (the length of o). We consider the following cases.

(a) If n =0, the result is immediate.

(b) Consider the case wheren > 1. Let 0 = ug £+, u; where r = s — t. There exist various contexts,
paths, valuations, and labelhngs such that [|C']| = ||C|| = ||| = ||C]|, #' and 8 are LHS labellings
for s, 6 is a LHS labelling for s?, 6; is a complete labelling for u; for i € {0,1}, 6; is a complete
labelling for ulo for i € {0, 1} 0 00, 01, 0 00, and 0, are L,,...- labellings, 00 and 00 are descendant,
labellings, ||C"?'|| = C? = ||C?]), ||C’1°|[Ldesc = (", and

Uo = CP[v(s)] %r cr I/(t)]_ =u

wf =0 [V/(So’u] 2y o CP( '2] =u ¥
(o) = (") )] By s AT )] = (1)
w =0 B, O] =w”

The claim can now be rephrased as

Cesc (éo (qo)) = Cesc (él (QI)) =4 cdesc(éo (Q(I))) = Cyesc (él ((ﬁ))

6These conditions are sufficient to ensure that all essential aspects of the identity of the redex occurrence persist through
the intermediate steps. For orthogonal CRS’s, the definition may be simplified to read as follows: For redex occurrences (u.p,r)

and (v.q,7), (u.p,r) [o] (v.q,r) iff u.p [o] v.q.
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By lemma 4.3, the following hold:

r é

(™))l = NEP D7 (™) 1)

[lex _
1) Nl = 17D (1) 1]
[

o s N/ a7 N . S
Let [|CP|l, = C?, ||7|l, = ¥, ||(s7) |l = 3, and ||(t?") ||, = ¢. Tt is clear that ||CP||,... = CP,
17|lp,... = v, and || — E||p,... = s — t. Thus, there are 8, 6y, and 6, such that

A4
|

u” = CPli(s)] 25 5 CPi(s”)] = uy ™

It holds that 6y is a descendant labelling because by is. Specifically, for any ¢, for i € {0,1},
0:(q) = 0i(@m) - - .- - 0:(q@) where {G} = {¢ | ||lui® .4ll. =u;.q} and ¢ are in lexicographic order.
Thus,

Caene(00(0)) = Cacee (01(q1)) © Caene(B0(90)) = Cacne (01(q1)) © Caene(B0(q0)) = Cacee (01 (q1))

By induction hypothesis, the result holds for o[1..n]. The result for the first step and the rest of
o can be concatenated.

2. Using previous part. O

Lemma 4.13. Let £ be a labelling scheme, let o be a ©°-reduction sequence, and let A and A’ be ©°-redex
occurrences in o such that A" is a residual of A. Then Deg(A) = Deg(A'). O

Proof. Let A = (o[i].p,r) and A" = (0[j].q,r). By definition, Deg(A) = Deg(r) = Deg(A'). O

4.4 Strongly Normalizing Labelling Schemes

This subsection introduces a sufficient condition for the strong normalization of labelled reduction. The
proof method leading to theorem 4.17 is adapted directly from van Qostrom’s method for arbitrary-order
pattern rewrite systems [vO97], with minor differences to handle the different labelling method as well as
the fact that CRS’s are only second-order.

Outermost Labels With respect to a labelling scheme £ = (L, ¢, d, P), the outermost label OutLab(w)
of a preterm w is « if Tree(w)(e) = @ € L and is otherwise undefined. A preterm w is outermost-labelled iff
OutLab(w) is defined. A valuation v is outermost-labelled iff Ran(r) C DomDef(OutLab), in which case we
define the set OutLab(v) = OutLab(Ran(v)).

Well Founded Label Ordering Let £ = (L,¢,d, P) be a labelling scheme and let # : L — N. The
function # is a well founded label ordering for L iff #(c(aq,a2)) < #(«;) for i € {1,2}, #(d(a)) < #(a),
and P(a) = #(a) > 0. Given a well founded label ordering # for £, extend # to complete L-labellings so
that #(0) = max{#(c(0(p))) | p € DomDef(6) }. Extend # to L-labelled preterms so that #(w) = #(0)
where TLD (w) = (w',0) and 0 is a complete labelling.

Lemma 4.14 (Outermost Labels Do Not Affect Termination). Let ¥ be a CRS, let L = (L,c,d, P)
be a labelling scheme, let u € Ter(X*) be an outermost-labelled term, let @" € L, let v = w'%) | and let
R = Red(X*). Then R-SN(u) < R-SN(v). O

Proof. Remember the definition of how R is formed from Red(X) and consider any rule r = (s = t) € R.
It is clear that s is of the form a(F'(s")) for some o € L, some F' ¢ L, and some metaterm s’, i.e., s has
exactly one label in outermost position above a non-label function symbol. Also, ¢ has exactly one label in
outermost position. Thus, the labels @ can not participate in any R-reduction sequence starting from v. In
any term, outermost labels beyond the first can not contribute to any reduction step. Thus, v is strongly
R-normalizing iff u is. O
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Lemma 4.15. Let ¥ be a CRS. Let L = (L,c,d, P) be a labelling scheme with well founded label ordering
#:L — N. Let R = Red(XF). Let u be a term, let s be a pattern, and let v be a valuation for s. Let V'
be an outermost-labelled valuation such that #(OutLab(v')) < k. Furthermore, let v'(u) —» g v(s). Then

either #(s) < k or there exists a valuation v" such that v —» g v"(s) and V' (V"' (t)) —»gr v(t) for any t.
O

Proof. O

Lemma 4.16. Let ¥ be a CRS. Let L = (L,c,d, P) be a labelling scheme with well founded label ordering
#:L — N. Let R =Red(X*). Then both of the following statements hold:

1. Let s be an unlabelled metaterm, let @ be a complete L-labelling for s, and let t = s°. Let k = #(t) =
#(6). Let v be an outermost-labelled valuation such that R-SN(v). Then R-SN(v(t)).

2. Let u be a term such that R-SN(u). Let v be an outermost-labelled valuation such that R-SN(v) and
max(#(OutLab(v))) < k. Then R-SN(v(u)). O

Proof. The proof proceeds by induction on k as follows. Part 1 will be proven using part 1 at £ — 1 and part
2 at k. Part 2 will be proven using part 1 at k — 1.

1. The proof of this part will proceed by (nested) induction on s in the ordering < as follows.

Without loss of generality, it is sufficient to prove this part for the case where the root of s is a
metavariable Z, as the following argument shows by cases on the shape of s if its root is not a
metavariable:

(a) Suppose s = F(5"). Let s' = Z(5™) for fresh Z and let v' = v[Z — F(Z1,...,Z,)]. Let t' = s
Observe that R-SN(v') and v(t) = v/(t'). It is clear that s', 0, t', and v’ satisfy the premises of
the lemma and obviously R-SN(v'(t")) iff R-SN(v(t)). Thus, the lemma for this case is implied
by the lemma for the case when the root of s is a metavariable.

(b) Suppose s = [z]$. Let s’ = Z(8) for fresh Z and let v/ = v[Z — [z]Z;]. The same reasoning now
holds as in the previous case.

(c) Suppose s = z. Thent = 2% = a;(--- (an()) - - - ) where 8(¢) = (@"). Then v(t) = t. It is obvious
that R-SN(v(t)), by the way the rule set R was constructed.

So let s = Z(5™). Observe that t = ap(--- (a1 (Z (5191, ... ,5,7™))) -+ -) where (e) = (@™). It is easy
to see that v(t) = am (- - (a1 (V' W(2)))) -+ ) = V' (am (- (aa (v(Z))) -+ ) where v/ = { Zi = u; |1 <i<n}
and u; = v(s;?) for 1 < i < n. By (the inner) induction hypothesis, R-SN(v(s;?*!)) holds for 1 < i < n.
Thus, R-SN(v'). Also, v' is outermost-labelled because .i is a complete labelling derived from 6 for
1 < i < n. Furthermore, max(#(OutLab(v'))) < k. Let $ = ap(-- (a1(v(Z)))--+). By lem-
ma 4.14, the fact that v is outermost-labelled, and R-SN(v(Z)), it holds that R-SN($). We have that
v(t) =v'(3).

Let u = 0($) where o = { Zi— 2; | 1 <i<n} and Z are fresh. Let v = {z; = u; | 1 <i<n}. Itis
clear that v'($) = v(u).

Now, using 7 for v, we match the premises of part 2 of the lemma. Hence, by part 2, R-SN(7(u)), thus
proving the desired result that R-SN(v(t)).

2. Let € = < U<pg. The proof of this part proceeds by (nested) induction on u in the relation < as
follows. The alert reader will notice that < is not an order and also that >> is not well founded.
However, because R-SN(u), all descending chains in < starting from u are finite (details omitted), so
we can perform induction. Let v = {z; — u; | 1 <i < n}. By cases on the shape of u:

(a) Suppose v = z for z ¢ DomDef(v). Then v(u) = z. It is obvious that R-SN(z).
(b) Suppose u = z; for 1 <i < n.” Then v(u) = u;. We already know that R-SN(u;).

"The proof differs at this point from van Oostrom’s proof [vO97] for arbitrary-order pattern rewrite systems. The difference
is due to the CRS restriction to second-order function symbols and (meta)variables.
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(c) Suppose s = [z]u’. By (the inner) induction hypothesis, we know that R-SN(v(u')). It is clear
from the definition of a CRS that the outermost binder can not participate in any reduction
sequence, hence R-SN([z]v(u')), which is the desired result.

(d) Suppose u = F(¢"™). Thus, v(u) = F(v(v1),...,v(vm)). By (the inner) induction hypothesis,

we know that R-SN(v(v;)) for 1 < i < m. We suppose that =R-SN(v(u)) and we will reach a
contradiction. Suppose there is an infinite R-reduction sequence o beginning with v(u). If every
redex contracted in o were not at the root, then we could construct an infinite reduction sequence
beginning with v(v;) for some ¢ € {1,...,m}, which is impossible because R-SN(v(v;)). Thus,
there must be some reduction step which contracts a redex at the root of the term.
Let r = (s = t) € R be the rule used in the first reduction step in o contracting a redex at the
root. By the definition of how R is obtained from Red(X), we know that r must in fact be of the
form s = t = a(F'(5")) = t’e, where o, 8 € L, F' ¢ L, t' is unlabelled, and 6 is an L-labelling for
t' such that Ran(f) = {(B8)}. It further holds that #(3) < #(a(F'(5"))). The reduction sequence
o must look like this for some valuation »':

v(u) = F((v1),... ,v(vm)) —>g V' (@(F'(8) —, V' (t"") —>p -

The reduction sequence depicted can only happen if in fact F = a and m = 1. Thus, ¢ must look
like this:

v(u) = aw(n)) — g a(F'(V(s1),...,V'(s1))) =V (s) —» I/I(tlo) —»pR -
Because the step using r is the first at the root, we can deduce that
v(vy) —»g F'(V (s1),...,V'(s1))

Because R-SN(v(v1)), we now know that R-SN(F'(v'(s1),...,v'(s1))). Assume w/o.l.o.g. that
DomDef(¢') = MV (F'(5)). By induction on the pattern F'(5) (details omitted), it holds that v’
is outermost-labelled and that R-SN(»'). We now consider two cases.

i. Suppose #(a(F'(5))) < k. Then #(t'") = #(8) = #(8) < k. Thus, by part 1 at k — 1 it
holds that R-SN(v/(#'%)), contradicting the claim that o is infinite.

ii. Suppose #(a(F'(5'))) > k. By lemma 4.15, u —»g v"(s) —, v"'(t) and v(v"(t)) —»r
V'(t). By the fact that R-SN(u) it holds that R-SN(v"(t)). Because at least one reduction
step occurred, v"(t) <« w. Thus, by (the inner) induction hypothesis (using v"'(t) for u), it
holds that R-SN(v(v"(t))). By the fact that v(v"(t)) —»r v'(¢), it holds that R-SN(v'(t)),
contradicting the claim that ¢ is infinite. O

Theorem 4.17 (Well Founded Label Ordering = SN). Let ¥ be a CRS. Let L = (L,c,d,P) be a
labelling scheme. with well founded label ordering # : L — N.  Then %X -reduction is strongly normalizing.
O

Proof. Suppose ~SN(X¥). Let u € Ter(X£) be a minimal term w.r.t. <l such that -X*-SN(u). Because u is
minimal and not strongly normalizing, u is not a variable nor does it have a binder in outermost position.
Thus, u = F(@") for some F and @. Because u is minimal, it holds that %*-SN(u;) for 1 < i < n. Let o be
an infinite reduction sequence beginning with u. Because the subterms of u are strongly normalizing, there
must be a reduction step at the root in o, i.e., ¢ must look like this for some rule r = (s — t) € Red(X¥)
and some valuation v:

UEF(W) —»ne 1/(5) — ]/(t) I

By the way Red(X¥) is formed, we know that s — t = a(s') — #? for some label a € L, some metaterm s’,
some unlabelled metaterm ', and some complete L-labelling 6 for ¢'. Thus, F = a and n = 1. So ¢ looks
like this:

u= alur) —rse aW(s') — v(t'?) —se -
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Because Y¥X-SN(uy), it holds that ¥-SN(v(s')). By induction on the pattern s’ (details omitted), it holds
that ©£-SN(v) and that v is outermost-labelled. Thus, by lemma 4.16, S£-SN(v(#'")), contradicting the
claim that o is infinite. O

REMARK 4.18. An earlier version of this paper “proved” an analogue of theorem 4.17 using a theorem of
Klop [Klo80, II 6.2.4] which has been shown to be false by Mellies [Mel96]. In addition to the fatal flaw in
Klop’s theorem pointed out by Mellies, there were a number of technical weaknesses in Klop’s approach. O

4.5 Labels for Developments
Y Let L., = {e,0}, dyee () =0, Pi.(a) & o # 0. Let

o ifo€{a,pB},
Cdev (CK, /8) = { /8}

e otherwise (i.e., {a, 8} = {o}).
Let Lio, = (Ldev7 Caev> Qaevs Pdev> and let ¥ = Yhdev,

Redex Family Labelling A set F = {5} is a redez family in u iff A are all redex occurrences in u.
Let F range over redex families. The redex family labelling for F in wu is the unique L,.,-labelling 8+ for u
such that Ran(87) = {(e), (o)} and 8£(p - ¢) = () iff there is some redex occurrence (u.p,r) € F such that
q € Int(r).

Development Given a redex family F in v and a ¥-reduction sequence 0 = 4 —» - - -, we say that o is a
development of F in u iff 077 is a valid reduction sequence of £. Given a finite development o = u —» v of
F in u and its labelled version 0% = u’* —» v?, we say o is a complete development of F in u iff B-nf(v?).

Lemma 4.19. Let F be a redex family in u.

1. A reduction sequence 0 = u —» - - - is a development of F in u iff for any redex occurrence A contracted
in o there is some A’ € F such that A is a residual of A’.

2. A development 0 = u —» v of F in u is a complete development of F in u iff every A € F has no
residuals in v. O

REMARK 4.20. If ¥ is not orthogonal, then it is possible for ¢ to be a complete development for F without
either contracting or discarding all residuals of redex occurrences in F. The contraction of an overlapping

redex occurrence can destroy another redex occurrence without consuming it completely. O
Theorem 4.21 (SN of X). Reduction in X is strongly normalizing. O
Proof. By theorem 4.17, using well founded label ordering # = {e — 1,0+ 0}. O

Corollary 4.22 (Finiteness of Developments). If Y is an orthogonal CRS, then all X-developments are
finite. O

Theorem 4.23 (Uniqueness of Complete Developments). If ¥ is an orthogonal CRS, then all com-
plete developments of F in u have the same result. O

Proof. By theorem 4.21 and theorem 3.6. O

REMARK 4.24. We can also show the standard result that all complete developments of the same redex
family have the same residual relation, but we do not need this for our later results. O
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4.6 Hyland/Wadsworth Labels

SHW Tet Luw = N, caw(a, ) = min(a, ), daw(a) = max(0,a — 1), and Paw(a) & a > 0. Let
Luw = (Luw, Cuw, duw, Paw) and let THW — v law

REMARK 4.25. Hyland/Wadsworth (HW) labels are a generalization of the notion of developments. A
reduction in ¥ can be seen as a reduction in W except using the labels @ and o instead of 1 and 0. O

The property of the following theorem 4.26 is called finite family developments by van Oostrom [vO97].
Theorem 4.26. If ¥ is orthogonal, then X8YW -reduction is strongly normalizing. O

Proof. By theorem 4.17, using well founded label ordering # = {i+—i|i € N}. O

Adequate Labelling An adequate labelling for a Y-reduction sequence 0 = u —» v is a complete Lyw-
labelling 6 for u such that ¢? is a valid HW-reduction sequence.
Van Oostrom credits an early version of the following lemma to Lévy [Bar84, sec. 14.2].

Lemma 4.27. Any finite X-reduction sequence o has an adequate labelling. (]

Proof. Let o be a k-step reduction sequence. Choose the complete labelling 6 such that Ran(8) = {(k)}. Let

0% = (ug, Ao, u1, A1, ..., Ag_1,u). By induction on i, the smallest label in u; is k—i. Thus, Deg(4;) > k—i.
Thus every redex occurrence contracted in of is a valid ¥H#W-redex occurrence. Thus, o? is a valid THW-
reduction sequence. O

5 Standardization via Redex Orderings

This section makes the notion of standard reduction relative to a redex ordering function R and identifies
sufficient conditions such that R yields a well-behaved notion of standard reduction and a normalizing re-
duction strategy. Unsurprisingly, the abstract conditions we identify bear a resemblance to the conditions
in [GLM92]. The standardization approach here is to obtain a standard reduction by iterating the replace-
ment of anti-standard pairs (2-step non-standard subsequences) by the corresponding standard complete
developments.

The anti-standard-pair-replacement method was first used by Klop [Klo80]. Klop’s method can be seen as
the restriction of ours that (1) fixes the redex ordering function R to order redex occurrences by a preorder
traversal and (2) sets the sufficient conditions for well-behavedness to be “¥ is left-normal”, where left-
normal means that all function symbols occur to the left of all metavariables in the left-hand sides of rules.?
The anti-standard-pair-replacement method is convenient to use with redex ordering functions that totally
order all redexes in a term; other approaches to proving standardization may be more suitable when working
with redex ordering functions that yield partial orders. Our proof that the anti-standard-pair-replacement
procedure terminates (theorem 5.9) is significantly simpler than earlier proofs.

Redex Ordering Function Let ¥ be a CRS and let u € Ter(X). A X-redex occurrence ordering of u is
a sequence p = [5"] where for 1 < i < n, A; is a Y-redex occurrence in u. When ¥ is clear from context,
we may abbreviate “X-redex occurrence ordering” by “redex ordering.” A redex ordering p is complete iff it
mentions all of the redex occurrences in u. A redex occurrence ordering function for ¥ is a function R such
that for all 4 € Ter(X), it holds that R(w) is a complete redex ordering of w.

Before, After, First, and Last Let ¥ be a CRS, let R be a redex ordering function for X, let u € Ter(X)
and let A, A" be redex occurrences in u. We say that a A is R-before A’ in u iff A <,y A’. When the
redex occurrence ordering function R is clear from context we may omit it. We define after, first, and last
similarly.

8Tt is an error in Klop’s definition of left-normal that it fails to mention binders and ordinary variables that are not under
metavariables.

23



Freezing and Frozen Redex Occurrences Let ¥ be an orthogonal CRS, let R be a X-redex ordering
function for ¥ and let 0 = (ug, Ao, u1,Aq,...) be a Y-reduction sequence. For 0 < i < |o| a E-redex
occurrence A in u; is R-freezing in u; iff A is R-before A; in u; (the to-be-contracted redex occurrence) and
for 1 < ¢ < |o| a redex occurrence A in u; is R-frozen in w; iff there exists a uj, 1 < j < i, such that A
is a residual of an R-freezing redex occurrence in u;. As above, when R is clear from context, it may be
omitted.

REMARK 5.1. A redex occurrence can be both freezing and frozen, because these notions depend separately
on the following reduction step and the preceding reduction sequence. O

R-Standard Reduction Sequence Let ¥ be an orthogonal CRS, let R be a ¥-redex ordering function
for ¥ and let o = (ug, Ao, u1,Aq,...) be a X-reduction sequence. For 0 < k < |o| the kth step of o (i.e.,

uy, 2k Ug+1) 18 R-standard iff Ay, is not R-frozen in u;. We say that o is R-standard iff all of its steps are
R-standard.

Good Redex Ordering Function A Y-redex ordering function R is good for ¥ iff for every 1-step
Y-reduction sequence o = u 2 v, both of the following statements hold:

1. Every R-freezing Y-redex occurrence in u has exactly one (R-frozen) residual in v.

2. All R-frozen Y-redex occurrences in v occur R-before all non-R-frozen ¥-redex occurrences in v.

Lemma 5.2. With respect to a good X-redex ordering function R, if o is an R-standard L-reduction se-
quence, then both of the following statements hold:

1. In every term in o, all frozen X-redex occurrences are before all non-frozen X-redex occurrences.

2. Every freezing X-redex occurrence in o has exactly one (frozen) residual in all subsequent terms. O
Proof.

1. By induction on i for 0 < i < |o|. For i =0, o[i] = ¢[0] has no frozen redex occurrences. For i = 1,
frozen redex occurrences in o[1] must be from freezing redex occurrences in ¢[0]. Thus, because R is
good, all frozen redex occurrences in o[1] will be before all non-frozen occurrences. For i > 2, any frozen
redex occurrences in o[i] are 1-step residuals of either freezing or frozen redex occurrences in o[i — 1.
By the induction hypothesis, all frozen redex occurrences are before all non-frozen redex occurrences
in ofi — 1]. Because o is R-standard, the redex occurrence contracted in o[i — 1] is non-frozen and
must be after all frozen redex occurrences in o[i — 1]. Thus, all frozen redex occurrences in o[i — 1] are
also freezing. Thus, all frozen redex occurrences in o[i] are residuals of freezing redex occurrences in
o[i — 1]. Because R is good, all frozen redex occurrences must therefore be before all non-frozen redex
occurrences in o[i].

2. Let A; be a freezing Y-redex occurrence in o[i]. We prove the claim by induction on j for i < j < |o|.
For j = i+ 1, because R is good, A; has a single residual in o[j] which is frozen by definition. For
j > i+ 1, by the induction hypothesis A; has a single frozen residual A;_; in o[j — 1]. Because o is
R-standard, the redex occurrence A contracted in o[j — 1] is non-frozen. By part one of this lemma,
Aj_; is before A and is thus freezing. Because R is good, Aj_; has a single (frozen) residual A; in
o[j], which must also be the sole residual of A; in o[j]. O

Lifting Redex Ordering Functions through Labellings A Y-redex ordering function R on Ter(X) is
lifted to a Y-redex ordering function R on Ter(X) as follows. For ¥-redexes A and A’ in ¥-term wu, it is
defined that A <g(y) A" ||A]] <R(||ull) [|A"]].

Lemma 5.3. Let ¥ be an orthogonal CRS and let R be any X-redex ordering function. Both of the following
statements hold:

1. If o is a X-reduction sequence, then o is R-standard iff ||o|| is R-standard.

2. If R is good for X, then R is good for X. O
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Reduction Strategy A reduction strategy S for ¥ is a partial function from Ter(X) to ¥-redex occurrences
such that S(u) is a E-redex occurrence in u.? If S is a reduction strategy, then define

S*(u) = (u, A, v) x S*(v) if S(u) = A and u 25 v,
| (u) (0 steps) if S(u) is undefined.

A reduction strategy S for ¥ is normalizing iff S*(u) ends in a normal form whenever u has a normal
form. Given Y¥-redex ordering function R, the R-first reduction strategy is the least defined 1-step reduction
strategy Sk such that Sk (u) = A if A is the R(u)-first X-redex occurrence in w.

Lemma 5.4. Let ¥ be an orthogonal CRS, R be any X-redex ordering function, u € Ter(X), and F be a
Y-redex family in u. Then there is a R-standard complete Y -development of F in u. Furthermore, if R is
good then there is only one such complete development. O

Proof. We must show that (1) there exists such a standard complete development and (2) that no more than
one exists if R is good.

Let 6 be the redex family labelling for F in u. Let 6 = Sk (u#) and let o = ||&||. Observe that 6 = o7~.
Thus, by definition, ¢ is a X-development of F in u. Observe that ¢~ is finite by theorem 4.21. Thus, by
definition of Sg, 0?7 ends in a X-normal form. Thus, ¢ is a complete X-development of F in u. Now it is
necessary to show that ¢ is R-standard. First we show that ¢ is R-standard, as follows. By induction on
i for 0 < i < |0%7|, we show that if A is a X-redex occurrence in ¢?#[i], then A is non-frozen. For i = 0
this is immediate. For i > 1, we know that for each ¥-redex occurrence A in ¢?#[i] that A is a residual of
a Y-redex occurrence A’ in ¢?#[i — 1]. (There are no created redex occurrences in X-reduction sequences.)
By the definition of Sg, we know that A’ is R-after the contracted redex occurrence in o7 [i — 1]. Thus, A
is non-frozen. Thus, all contracted redex occurrences in ¢%# are non-frozen and ¢’ is R-standard. Thus,
by lemma 5.3 part 1, o is R-standard.

What remains to be shown is the uniqueness of ¢ if R is good.

Suppose o' is an R-standard complete X-development of F in w and that o’ # ¢. Thus, by lemma 5.3
part 1 and the definition of a complete development, we know that o’ 97 is an R-standard X-reduction
sequence ending in a Y-normal form, just like o%7. We know that 0% # ¢'’7. Let the ith step be the first
one where g7 differs from ¢'%”7. Let A be the Y-redex occurrence in 7 [i] which is contracted in the ith
step of 7. Remember that A is the R-first ¥-redex occurrence in 0% [i]. Let A’ be the ¥-redex occurrence
contracted in the ith step of ¢'%7. We know that A # A’ and that A <r(ooxyu) A" Thus, A is freezing in
o7 [i]. By Lemma 5.3 part 2, it holds that R is good for ¥. Because o'’7 is R-standard, by lemma 5.2 it
holds that A has a frozen residual in the final term of o'%* , which is therefore not in Y-normal form. Thus
o' is not a complete development, a contradiction. O

Lemma 5.5. Let R be a good X-redex ordering function for orthogonal CRS X. Let o be a 2-step non-R-
standard X-reduction sequence. Then o is a complete development. O

Proof. Let o = (ug, Ao, u1, A1, us). Because o is not R-standard, the redex occurrence A; must be a residual
of a freezing redex occurrence A} in ug. Because R is good, A; must be the sole residual in u; of Aj. Thus,
uz2 has no residuals of the redex family F = {Ap, A]} in ug and all redex occurrences contracted in o are
residuals of redex occurrence in F. Thus, ¢ is a complete development of F in uyg. O

——=-Reduction With respect to an orthogonal CRS ¥ and a good X¥-redex ordering function R, let —>
be the smallest relation such that:

If 0y xo %02 is a Y-reduction sequence, ¢ is a 2-step non-R-standard reduction sequence, which by
lemma 5.5 is a complete development of some redex family F, and ¢’ is the unique (by lemma 5.4)
R-standard complete X-development of F such that o ~ o', then o1 * o x 05 = 01 * o' x 05.

We will use the terminology of reduction when discussing =.

9These are 1-step (a.k.a. sequential) strategies. We do not consider multi-step (a.k.a. parallel) strategies.
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Lemma 5.6. Let ¥ be an orthogonal CRS. Let o be a complete Y-development of a redex family F in a
term u. Let 8 be an adequate labelling for o. Then there is a YUV -redex family F' in u? such that o is
a complete SV -development of F'. Furthermore, for any other complete L -development o' of F in u, it
holds that o'® is a complete STV _development of F'. O

Proof. Let F' be the "W _redex family in u? such that ||F'|| = F. By the definition of complete development
and lemma 4.12, we know that every redex occurrence contracted in ¢? is a residual of a redex occurrence in
F' and that F' has no residuals in the final term of o?. Thus, o/ is a complete development of F'. Now let
o' be another complete Y-development of F in u and consider o'’ By lemma 4.12 we know that every step
in o'’ contracts a redex occurrence which is a residual of a redex occurrence A € F'. By lemma 4.13, we
know that the contracted redex occurrence has the same degree as A. A residual of A with the same degree
is contracted in 0%, so we know the degree is greater than 0. Thus, o'’ is a valid ZH#W-reduction sequence.
We know it is a complete development of F’ for the same reasons that applied to o?. O

Lemma 5.7. With respect to an orthogonal CRS ¥ and a good X-redex ordering function R, if o is a
Y -reduction sequence with adequate labelling 6 and o => o', then 6 is adequate for o'. O

Proof. We know that ¢ = o1 *6 x09 = 01 *0' x03 = o' where 6 and &' are complete developments of
some redex family F such that 6 ~ 6’. We also know that ¢ is a valid HW-reduction sequence and we
wish to show that o'’ is also a valid SHW-reduction sequence. It holds that o? = 1% % 671 % 0972 for some
labellings #; and 6. By lemma 5.6 and theorem 4.23, we know that 6% ~ (6')"" and that (6")"" is a valid
SHW _reduction sequence. We then obtain that o'’ = 1% % (6")"" * 02?2 is a valid S¥W-reduction sequence,
which is the desired result. O

Lemma 5.8 (Konig). Let binary relation R be finitely branching. An R-sequence is a sequence x =
(a1,as2,as,...) where R(a;,a;4+1) for 1 < i < |x|. Suppose there does not exist an upper bound k on the
mazimum length of R-sequences. Then R is not well founded, i.e., there is an infinite R-sequence. O

Theorem 5.9. With respect to an orthogonal CRS Y and a good X-redex ordering function R, = -reduction
on finite X-reduction sequences is strongly normalizing. O

Proof. Let o be a Y-reduction sequence. Let 6 be an adequate labelling for o. Let k be the length of
the longest SHW_reduction sequence beginning with 0[0]9. We know k exists by theorem 4.26 and Konig’s
lemma. By lemma 5.7, we know that if 0 =% o', then 6 is adequate for ¢’. Thus, if 0 =% ¢’, then ¢’ is
no longer than k steps. Let f compute a metric on reduction sequences as follows: f(o) = (go,--- ,g|s|-1)
where g; is the number of Y-redex occurrences R-before the redex occurrence contracted in step ¢ of o.
Observe that if 0/ = ¢ then f(0) >1ex f(0'). Observe also that > is well founded (i.e., has no infinite
descending chains) on sequences whose length is bounded by a fixed length k. (This can be shown by the same
method used to show that the multiset extension of a well founded ordering is well founded, a result proved
in [DM79].) Thus, any =>-reduction sequence beginning from any ¢ must terminate, i.e., =>-reduction is
strongly normalizing. O

Theorem 5.10. With respect to an orthogonal CRS ¥ and a good X-redex ordering function R, a %-
reduction sequence o is a =>-normal form iff o is R-standard. O

Proof. The “if” direction is easy: if ¢ is R-standard, then ¢ has no non-R-standard 2-step subsequences
and is therefore a =>-normal form. This leaves the “only if” direction. Let o be a =>-normal form.
We prove the claim when o is finite by induction on |o].

1. Suppose 0 < |o| < 1. Then o can not be non-standard.

2. Suppose |o] = 2. Suppose o is non-R-standard. Then o has a 2-step subsequence (itself) which is
non-R-standard. Thus, it is not a =>-normal form, a contradiction.
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3. Suppose |o| > 3. By the induction hypothesis, both ¢[0..|o| — 1] and o[1..|o|] are R-standard. Suppose
o is non-R-standard. Let the kth step be non-R-standard. If k¥ < |o| — 1, then o[0..|]o| — 1] would
be non-R-standard, so it must be the case that £k = |o| — 1. For 0 < i < |o| let A; be the redex
occurrence contracted in step ¢ of o. Thus, the redex occurrence A must be frozen, i.e., A must be
a residual of a freezing redex occurrence A in o[j] for some j < k. If j > 0, then o[1..|o|] would be
non-R-standard, so it must be the case that 7 = 0. Because R is good, we know that the freezing
redex occurrence A in ¢[0] must have exactly one residual A’ in o[1], and A’ must be frozen. Because
step 1 (the initial step is step 0) is R-standard and R is good, the frozen redex occurrence A’ must be
before the contracted redex occurrence A;. Thus, A’ is also freezing. Because A’ is the sole residual
in o[1] of A, we know that A’ also has Ay as a residual. Thus, Ay is a residual of a freezing redex
occurrence in o[1], contradicting that o[l..|o|] is R-standard.

For infinite o, we observe that if o is non-R-standard, then there is some finite prefix o[0..j] that is
non-R-standard. Then, because ¢0..j] is a =>-normal form, we know that ¢[0..j] is R-standard. Thus, if
infinite o is a =>-normal form, it follows that o is R-standard. O

Theorem 5.11 (Standardization). Let ¥ be an orthogonal CRS and R a good X -redex ordering function.
For any finite ¥-reduction sequence o, there is an R-standard X-reduction sequence o’ such that o ~¢'. [

Proof. By theorems 5.9 and 5.10. (|

Theorem 5.12 (Normalization). Let ¥ be an orthogonal CRS and R a good X-redex ordering function.
Then the R-first reduction strateqy Sr is normalizing for 3. O

Proof. First, we claim for any R-standard X-reduction sequence o ending in a Y-normal form that o =
S5 (0[0]). We prove the claim by induction on the length of o.

1. Suppose |o| = 0. Then X-nf(s[0]) and S% (o]0]) = (¢[0]) = 0.

2. Suppose |o| > 1. Let A = Sg(c[0]) (the R-first X-redex occurrence in ¢[0]). Suppose o does not begin
by contracting A. Because o is R-standard, by lemma 5.2, A has a residual in all subsequent terms
in 0. However, this contradicts that ¢ ends in a ¥-normal form. Thus, both S%(¢[0]) and ¢ begin by
contracting A. Let ¢[0..1] = (¢[0], A, o[1]). So S%(c[0]) = ¢[0..1] xS} (¢[1]). By induction hypothesis,
o[l..] = 8% (o[1]). This implies that ¢ = Sx (a[0]).

We now use the above claim. Suppose v 25, v. Then there is some Y-reduction sequence o = u —» v.
By theorem 5.11, there exists a R-standard Y-reduction sequence ¢’ such that o ~ ¢’. By the claim proven
above, ¢’ = 8% (u). Thus, S (u) ends with v. Thus, Sg is a normalizing reduction strategy. O

6 Redex Orderings via Subterm Orderings

In order to make use of the results of section 5, this section defines a method for finding good redex ordering
functions. In particular, this section (1) shows how to derive redex ordering functions from subterm ordering
functions and (2) defines conditions that are sufficient to guarantee that such functions are good and (3)
presents a “generic” generator of subterm ordering functions. The methods developed here are general
enough for the applications in the companion paper [MWO00]. There seems to be a close connection between
the material here and the notion of strong sequentiality [HL91b], but we have not formally verified this.

Subterm Ordering Function Let ¥ be a CRS and let u € Ter(X). A X-subterm occurrence ordering of
u is a sequence 7y = [p] of members of Skel(u). When ¥ is clear from context, we may abbreviate “¥-subterm
occurrence ordering” by “subterm ordering”. A subterm ordering v is complete iff v = Skel(u). A subterm
occurrence ordering function for ¥ is a function I" such that for all u € Ter(X), I'(u) is a complete subterm
ordering for w.
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REMARK 6.1. Some subterm ordering functions can be seen as strategies for traversing trees of terms which
visit the nodes of a tree in some particular order, e.g., preorder traversal. For practical purposes, we are
interested in subterm ordering functions that (1) visit the root first, (2) always visit a child of a previously
visited node, and (3) decide which node to visit next using only information on the previously visited
nodes. O

Redex Orderings from Subterm Orderings Given a CRS ¥ with u € Ter(X), a subterm ordering =y
for u determines a redex ordering for u, notation |vy|s (written || when ¥ is obvious), such that if there
are Y-redex occurrences A = (u.p,r) and A" = (u.p',7"), then A <|,| A"iff p <, p'. It is clear that if v is
complete then |v]| is too. If T is a subterm ordering function, then ||y (written |I'| when X is obvious) is
the redex ordering function {u + |I'(u)] | u € Ter(X) }. A subterm ordering function T is good for ¥ iff |T'|
is a good Y-redex ordering function.

Let s — t € Red(X), u € Ter(X), p and ¢ be paths. Let the predicate PartialRedexMatch(s, u, p, [§"])
hold iff ¢; = p- ¢}, ¢} € Int(s), and Tree(u)(g;) = Tree(s)(q;) for 1 < i < m.

Sufficient Conditions for Goodness The following conditions on subterm ordering functions will be
proven to be sufficient to guarantee that a subterm ordering function I' is good for an orthogonal CRS .

1. A subterm ordering v = [p"] of u is top-down iff for 1 <14 < n, if p; = q-j for some path ¢ and number
J, then g € {p1,...,pi—1}. A subterm ordering function T is top-down iff for all u € DomDef(T") it holds
that ['(u) is a top-down subterm ordering of u.

Informally, ' is top-down if it visits a node only after visiting the node’s parent.

2. A subterm ordering function I is no-lookahead iff for all u, v € Ter(X), if I'(u) = [p™, 4], ['(v) = [p™, q_7]
and Tree(u)(p;) = Tree(v)(p;) for 1 < i < m, then ¢; = ¢.

Informally, ' is no-lookahead iff it only uses information from nodes already visited to decide which
node to visit next.

3. A subterm ordering v = [p"] of u is X-redez-directed (redex directed) iff whenever s — t € Red(X),
1<i<n,1<j<|Int(s)|, and PartialRedexMatch(s, u, p;, [ps, . . . , Pi+j—1]), then pi; = p;-q for some
g € Int(s). A subterm ordering function I is X-redez-directed (redex-directed) iff for all u € Ter(%),
['(u) is a redex-directed subterm ordering of wu.

Informally, thinking of I'(u) as a traversal of the nodes of Tree(u) in a particular order, whenever a
redex-directed traversal has seen part of the LHS of some reduction rule r € Red(X), the next node
visited contributes to determining whether the LHS of r indeed matches the term.

REMARK 6.2. A Y-redex ordering function R is top-down iff for every pair of Y-redex occurrences A =
(u.p,r) and A" = (u.p’,r") in term u, if p < p' then A <) A’. Observe that if I' is a top-down subterm
ordering function, then |I'|y is a top-down X-redex ordering function. (]

Lemma 6.3. Let & be a CRS and let u 25y, v where A = (u.p,r). Let T be a top-down and no-lookahead
subterm ordering function and let R = |T'|. Then

1. If T(u) = [p™, q] where p = py,, then T(v) = [p™, 7] and for 1 <i < n, Tree(u)(p;) = Tree(v)(p;).
2. If A" = (v.p',7") is an R-frozen redex occurrence in v, then p' <p() p. O
Proof.

1. Because I is top-down, p = p, £ p; for 1 <i < n. The definition of CRS’s then implies Tree(u)(p;) =

Tree(v)(p;) for 1 < i < n, because none of the positions p”~! can be affected by the contraction of A.

Let I'(v) = [5] We now prove by induction on ¢ for 1 <14 < n that ¢; = p;. If i = 1, then this follows
from the fact that p; = ¢ = € which holds because I' is top-down. Suppose i > 2. By the induction

hypothesis it holds that [5*~'] = [§"=']. Then p; = ¢; follows because I has the no-lookahead property.
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2. By the definition of frozen, A’ is a residual of a freezing redex occurrence A" = (u.p”,r') in u. By the
definitions of freezing A" <z (,) A and therefore p" <r(,) p. That is, I'(u) = [p", ¢] where p = p,, and
p" € {p1,...,pn—1}. The result then follows by part (1) of this lemma. O

Theorem 6.4. Let ¥ be an orthogonal CRS and let T' be a top-down, no-lookahead, and redex-directed
subterm ordering function. Then T is good for X. O

Proof. Let R = |T'| and consider the reduction step u 2s v with A = (u.p,r). Let v = T(u). Let
r" € Red(X). We must show that (1) every R-freezing redex occurrence in u has exactly one residual in v
and (2) that every R-frozen redex occurrence in v occurs before every non-frozen redex occurrence in v. We
establish 1 and 2 separately.

1. Suppose A" = (u.p/,r") is a L-redex occurrence in u such that A’ does not have exactly one residual
in v. Because ¥ is orthogonal, it must hold that p < p'. Then, because I" is top-down, A <, A’ and
p <~ p'. Therefore, by definition, A’ is not freezing.

2. Suppose A" = (v.p/,r') and A" = (v.p",r") are L-redex occurrences in v such that A’ is non-frozen,
A" is frozen and A" <|p(,) A”. By lemma 6.3 (2), it holds that p" <r(,) p. Because A" <|p@,) A",
it holds that p' <p(,) p”. Therefore, by the transitivity of <p(,), and the non-frozeness of A’, it must
hold that A’ is a created redex occurrence. Because I is top-down, p £ p'. Because A’ is created and
p £ p', it must hold that p’ < p. Specifically, it must hold that p = p’ - ¢ for some ¢ € Int(r'). Then,
because I is ¥-redex-directed and p' <p(,) p" <r(y) p, it must hold that p” = p' - ¢’ where ¢ € Int(r').
Thus, A’ and A" overlap, contradicting the premise that ¥ is an orthogonal CRS. O

G(%,0)(s) = NextOrderk; ¢ ,([]) where k = |Skel(s)| and

NextOrders.o. (8) [, pit1] if § = ['] # wrong and NextPoss e ([5"], s) = pi+1 # wrong,

wrong otherwise,
t Tr if t
NextPoss.o(y,5) = O(Opts (7, 5), Tree(s) 1 7) - if Opts(y, 5) # wrong,
wrong otherwise,
Unex(y,s) = min<(Skel(s)\ )
Discs(y,s) = {(s.p,r) | r € Red(X),Vq € Int(r).

p - q € 7y and Tree(s)(p - q) = Tree(LHS(r))(q) }
Invs(y,s) = {p]|(s.q,r) € Discs(y,s),q € Int(r),p<q-q'}

Possz(v,s) = {(s.p,s =t) | pey\Invs(y,s),s =t € Red(X),
Vg € Int(s'). p- q € v = Tree(s)(p - q) = Tree(s')(q) }
PossUnex(s.p,r) = {p-q|q €Int(r),p q € Unex(y,s)}
Mands(vy,s) = ﬂ PossUnex(s.p, )
(s.p,r)EPossx (7,s)
Unex(v,s)  if Posss(y,s) = &,
Opty(y,s) = Mands (v, s) if Posss(v,s) # @ and Mandx (v, s) # &,

wrong if Possx(7, s) # @ and Mands(y, s) = @

Figure 1: A generic subterm ordering function generator.

A Subterm Ordering Function Generator Figure 1 defines a subterm ordering function generator G.
The generator G can be applied to any CRS ¥ and choice function ©. The choice function ® may be any
fixed total function such that ©({p}, ¢) € {p} U {wrong}. The second argument to © is extra information
that it may use in deciding which member of its first argument to return. If no choice function is specified as
in G(X), then this stands for G(X, O1ex) where O is the choice function such that ©ex ({F}, ) = minjex{p}.
In using the various functions defined in figure 1, the subscripts of ¥ and © will sometimes be omitted when
the CRS and choice function being used are clear from the surrounding text.

29



Intuitively, the meanings of the functions NextOrder, NextPos, Unex, Disc, Inv, Poss, PossUnex, Mand,
and Opt are as follows. The function NextOrder either extends a subterm ordering by exploring one addi-
tional position in the term or propagates the failure symbol “wrong”. Given a term v and a subterm ordering
on some subset of Skel(u), The function NextPos determines the next position to explore in the term, if
possible. The function Unex gives the “unexplored frontier positions”, Disc the “discovered redex position-
s”,10 Inv the “invalid positions for undiscovered redexes”, Poss the “possible redex occurrences”, PossUnex
the “unexplored positions on the frontier of a possible redex occurrence”, Mand the “must-explore-next
positions”, and Opt the “options for next position to explore”.

Lemma 6.5. Let ¥ be a CRS. Then G(X) is a total function on Ter(X), always returning either a subterm
ordering for its input or wrong. O

Proof. Obvious by inspection of the definition of G. O

EXAMPLE 6.6. Consider the non-strongly-sequential CRS ¥,,, [HL91b] with Red(X,..) = {r1, 72,73} where

rn = F(G,HZ) -1,
ry F(Z,G,H) - I
rs = ( Z G)

2}, Int(ry) = {]

H,
Note that ¥,.4 is an orthogonal CRS with Int(r) = {e, 1, ,2,3}, and Int(rs) = {¢,1,3}. Let
u = F(uy,u2,u3) € Ter(X,.q). Then Unex([e],u) = {1,2,3 } and Poss([e],u) = {(u.€,71), (u.€,72), (u.€,73)}.
However, Mand([e],u) = {1,2} N {2,3} N {1,3} = @, i.e., G(Ei.a)(u) = wrong so G(X,.4) is not a good

subterm ordering function. O

REMARK 6.7. The first redex occurrence picked by G(X) is always the same as the redex occurrence picked
by the algorithm of Huet and Lévy for finding a strongly needed redex occurrence [HL91b]. Thus, we
conjecture that G(X) is total iff ¥ is strongly sequential. (Of course, we must first extend the notion of
strong sequentiality to CRS’s in the natural way.) O

Theorem 6.8. If ¥ is orthogonal and T = G(X) is a subterm ordering function for ¥ (i.e., wrong ¢
[(Ter(X))), then T is good for X. O

Proof. By lemma 6.5 and theorem 6.4, it suffices to show that I' is top-down, no-lookahead and ¥-redex-
directed. The generator G was specifically designed in order to yield subterm ordering functions satisfying
these conditions. That I is top-down follows from the fact that it starts at the root and in each subsequent
iteration, the next node is selected from the unexplored children of already selected nodes. That I' is no-
lookahead follows from the fact that the choice function O is constrained to be a fixed function that selects
the next node from its first argument using only the nodes considered so far. That I' is ¥-redex-directed
follows from the fact that it always selects a node that is an internal position of the LHS of a reduction rule
if the LHS of the rule partially (but incompletely) matches nodes in the tree. O

7 Evaluation

In this section we show how the subterm ordering function generator introduced in the preceding section
can be specialized for the class of CRSs known as constructor systems. These are the CRSs that one would
expect to arise in conjunction with programming language semantics. The subterm ordering function is
specialized in that it has been provided a choice function that is biased to fully explore the internal positions
of values before considering other nodes. We call such a choice function a “value respecting” choice function.
This section also shows how to derive the sets of values and evaluation contexts directly from the reduction
rules of the CRS. These are then used to further define an evaluation relation for the CRS.

We say that a CRS X is manageable if and only if it is orthogonal and the specialization of G for ¥
is a well-defined subterm ordering function. In theorem 7.6 we show that if ¥ is a manageable CRS and
u —»y v then there exists a value v’ such that u evaluates to v’ and v’ reduces to v. We call this property
Plotkin-Wadsworth-Felleisen standardization.

101f we allowed non-fully-extended reduction rules, we would have to call the result of Disc the “discovered redex-like patterns”.
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Context/Term Decomposition The context/term decomposition of a preterm w at a set of positions P
such that P N Skel(w) # @, written Decomp(w, P), is defined as follows:

Clil=w
(C™ | (i) € Decomp(w, P) <> { and Skel(C') = { q € Skel(w) | #ip€ P.p < ¢}
and Tree(C)(P N Skel(C)) = {O}

The set Decomp(w, P) will contain an infinite number of context/subterm decompositions iff at least one
position p € Skel(w) N P is below a binder in w.

Value Patterns and Values A pattern s subsumes a pattern ¢, written s C ¢, iff Tree(s)(p) = Tree(t)(p)
for all p € Int(s). Given constructor CRS X, define its sets of value patterns and values as follows:

ValPatt(X) = min-{s; | s + ¢t € Red(X),s = F(5"),1<i<n}
Val(X) ={v(s) | s € ValPatt(X), v is a valuation for s }

Value-Respecting Choice Function Given a constructor CRS X, define the following;:

PossVals (f) = {s € ValPatt(X) | Jp' € Int(s).f(p’) is undefined,
Vp € Int(s).f(p) defined = f(p) = Tree(s)(p)},
MandVals (P, f) = PN (Nsepossvals(r) Int(5)),
minjex (P) if PossValy(f) = &,
ValChoose(Z)(P, f) = < minjex(MandVals (P, f)) if PossVals(f) # @ and MandVals (P, f) # &,
wrong if PossVals(f) # @ and MandVals (P, f) = @.
ValOrder(X) = G(Z, ValChoose(X))

Given that f represents a partial top-down exploration of some term w, the meaning of PossValy:(f),
is that a value pattern s € PossValy(f) iff u might be a value by virtue of s matching u, but u has not
been explored enough to determine this for certain. The intuitive meaning of MandVals (P, f) is the set of
positions that must be explored. The function ValChoose(X) is a “value respecting” choice function, i.e., a
choice function that is biased to fully explore the internal positions of values before considering other nodes.
ValOrder(X) is the subterm ordering function generator specialized with the value respecting choice function.

Let X be a constructor CRS, let u € Ter(X), v be a top-down subterm ordering of u and let f = Tree(u) |
~. Then the predicate MaybeVal(f,¥) holds if and only if PossVals (f) # &. The predicate IsVal(f, ) holds
if and only if there exists an s € ValPatt(X), such that s is linear and fully extended, Int(s) C DomDef(f)
and Vp € Int(s), Tree(s)(p) = f(p). We define the predicate NotVal(f,X) to hold if and only if neither
MaybeVal(f, ) nor IsVal(f,X) hold.

Manageability A CRS X is manageable iff ¥ is orthogonal and ValOrder(X) is a subterm ordering function.

Evaluation Contexts Given a manageable CRS X, define:

CtxtsPos(s,p, P) = {C" | (C, x) € Decomp(s, {p} U P),(C",x") € Decomp(C[i], {p}) }
ContextsMTyg(s) = {C' | ValOrder(X)(s) = [p"],2 < i < |Int(s)|,
C € CtxtsPos(s, p;, min< ({piy1,... ,pn} U{p | Tree(s)(p) € MVar }))}

gred(z) = Us%tERed(Z) COIlteXtSMTE(S)
gval(z) - UsEValPatt(E) COnteXtSMTE (S) U {D}
EvalCont(X) ={C[C.[--[Cn]--- 1] | C € Ea1(2),C™ € Erea(T) }

A context C' € CtxtsPos(s, p, P) iff C is the one-hole context formed from s by chopping s at the positions
{p} U P and filling in the holes at postions P by arbitrary terms (not metaterms), leaving a single hole at p.
A context C' € ContextsM Ty (s) iff C' is a one-hole context formed from s by partially exploring s according
to ValChoose(X), putting O at the next position to explore and replacing all other unexplored positions by
arbitrary terms.
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Evaluation Given redex occurrence A = (u.p, ), the statement u 25, v holds iff u 255, v where u = C?[u']
and C' € EvalCont(X). In this case, we also write u £y v and u —x v. Let —»y, be the transitive, reflexive
closure of —y.

Let Y-eval-nf(u) hold iff there exists no v such that u —x v. The operational semantics for ¥ is a
function Evaly, such that for u € Ter(X),

value if Jv. u —»x v,v € Val(¥),
Evaly (u) = < diverges if #v. u —»yx v, S-eval-nf(v),
stuck otherwise.

Two terms u and v are observationally equivalent, written u ~yx v, iff Evaly(C[u]) = Evals(C[v]) for every
context C' such that {C[u],C[v]} C Ter(X).

A term u is evaluable w.r.t. a CRS ¥ iff there exists some v such that u —yx v. Observe that wu is
Y-evaluable iff there exists a rule s — ¢ € Red(X), an evaluation context C' € EvalCont(X), and a valuation
v such that w = C[v(s)]. A term w is root-stable w.r.t. a CRS X iff there is no ¥-redex term v such that
U —»y U.

Lemma 7.1. Let ¥ be manageable. Let u —»x v where u ¢ Val(X) and v € Val(X). Then u = C[u'] where
C € Eva(X) and u' is X-root-unstable. O

Proof. Let v = v(s) where s € ValPatt(X). Let [p™] = ValOrder(X)(s). Let j be the smallest index between
1 and |Int(s)| such that Tree(u)(p;) is defined and Tree(u)(p;) # Tree(s)(p;). Such a j must exist because
otherwise u € Val(X). Let (C, (#*)) € Decomp(u, {pj, ... ,pm}). By induction (details omitted), v(s) = C[7]
where u; —»x v; for 1 < ¢ < k. Let the ith hole of C be at p;. It holds that Tree(u;)(e) # Tree(s)(p;) =
Tree(v;)(€). Thus, in the reduction sequence u; —»y v;, there must be a step at the root. Hence, u; is
Y-root-unstable. Let C' = Cluq, ... ,uj—1,0,u41,. .. ,ug]. Observe that u = C'[y]. It can be checked that
C' e Eal(D). O

Lemma 7.2. Let ¥ be manageable. Let u be L-root-unstable but not a X-redex term. Then u = Clu'] where
C € &red(X) and u' is T-root-unstable. O

Proof. Let o be a reduction sequence v —»y v such that v is the only Y-redex term in 0. Let v = v(s)
where s — t € Red(X). Let [p] = ValOrder(X)(s). Let j be the smallest index between 1 and |Int(s)]
such that Tree(u)(p;) is defined and Tree(u)(p;) # Tree(s)(pj). Such a j must exist because otherwise
u would be a Y-redex term. Let (C,(@*)) € Decomp(u,{p;,...,pm}). By induction (details omitted)
using the fact that v is the first term with a redex occurrence at its root, v = C[v] where u; —»x v; for
1 <i <k Let the Ith hole of C be at p;. It holds that Tree(u;)(e) # Tree(s)(p;) = Tree(v;)(e). Thus,
in the reduction sequence u; —»y v;, there must be a step at the root. Hence, u; is ¥-root-unstable. Let
C'=Cluy,... ,uy—1,0,%41,-..,ug]. Observe that u = C'[w]. It can be checked that C" € Ereqa(X). O

Lemma 7.3. Let ¥ be manageable, u —»x v, v € Val(X), and u ¢ Val(X). Then u is X-evaluable. O

Proof. By lemma 7.1, u = C[u'] where C € &,,(X) and u' is root-unstable. By induction on the size of u',
we will prove that u' = Ci[---[Cy,[u"]] - - -] for some n where C; € (L) for 1 < i < n and u” is a redex
term. If ' is a redex term, then by setting n = 0 we are done. If v is not a redex term, then by lemma 7.2,
u' = C1[a] where C; € £reqa(X) and 4 is root-unstable. By induction hypothesis, 4 = Cy[- - - [Cp[u"]] - - -] for
some n where C; € &eq(X) for 2 < i <n and u" is a redex term. Let C' = C[C4] -+ [Cy]---]]. Observe that
u = C'[u"] and that C" € EvalCont(X). Hence, u is evaluable. O

Lemma 7.4. If ¥ is manageable, I' = ValOrder(X), R = [T'], and u By v, then A is the R-first redex
occurrence in . O

Proof. Let A = (u.p,r). By the definition of evaluation, u = CP?[u] where C € EvalCont(X). Let C =
C'C1[-+-[Ch] -+ -]] where C" € E,(E) and C; € &req(X) for 1 < i < n.
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Let C' be formed from s € ValPatt(X) as in the definition of £,u as follows. Let I'(s) = [p | and
let the hole in C’ be at p;. Thus, C' € CtxtsPos(s,p;, {Pj+1,...,Pm}). Observe for 1 < ¢ < j that
Tree(s)(p;) = Tree(u)(p;). Let T'(u) = v = [™]. Because I' is no-lookahead, this means that the initial
subsequence p7 of 7 is the same as 5].

For 1 <i < n, let C; be formed from the LHS of s; — t; € Red(X) as in the definition of &.eq as follows.
Let I'(s;) = [Pi1s--- »Pim:)- Let the hole in C; be at pj,. Thus, C; € CtxtsPos(s;, Pi j;» {Pijs+15--- »Pim})-

O

Lemma 7.5. Let ¥ be an orthogonal CRS. Let R be a good top-down X.-redex ordering function. Let o be
an R-standard X-reduction sequence. With respect to o, let A = (o[i].p,r) be an R-freezing redex occurrence.
Then for q < p and i < j < |o], Tree(ai])(q) = Tree(o[j])(a)- O

Proof. By lemma 5.2, A has one R-frozen residual in o[i] and all later terms in o. By the fact that R is
top-down, every contracted redex in ofi..] is a a position p' where p' £ p. Thus Tree(a[j])(p") for p” < p
must remain unchanged. O

Theorem 7.6 (Plotkin-Wadsworth-Felleisen Standardization). If ¥ is manageable, u —»x v, and
v € Val(X), then there exists v' € Val(X) such that u —»x v/ —»x v. O

Proof. Let I' = ValOrder(X) and let R = [I'|. Because ¥ is manageableand by theorem 6.8, R is good for
Y. Thus, by theorem 5.11, there is a R-standard reduction sequence o of the form u —»yx v. Let j be the
least index such that o[j] € Val(¥). Let ' = o[j]. We now prove by induction on ¢ for 1 < i < j that
u —»y, o[i]. By cases on i:

1. Suppose i = 0. Then u —»x, o[i] in 0 steps.

2. Suppose ¢ > 0. By induction hypothesis u —yx o[i —1]. Because o[i — 1] is not a value and
o[i —1] —»x ', by lemma 7.3 ofi — 1] is evaluable. Thus, ofi — 1] 5 o' for some u' and A.
By lemma 7.4, A is the R-first lemma in o[i — 1]. Let the subsequence o[i — 1..i] be the reduction step
oli — 1] A5y ofi]. If A = A’, then ofi — 1] —y, o]i].

Suppose that A # A’. Then A is a R-freezing redex occurrence. Let A = (o[i —1].p,r) and let
A" = (o[i — 1].p/,7"). By lemma 7.5, Tree(a[i — 1])(§) = Tree(v')(§) for ¢ < p.

Let ofi — 1] = CP[d]. Note that C € EvalCont(X). Let C' = C'[Cy[---[Cy] - -]] where C' € Ea(E)
and C € &eda(X). Let C' be formed from s € ValPatt(X) as in the definition of &, as follows.
Let I'(s) = [ﬁm] and let the hole in C' be at p;. Let C' € CtxtsPos(s,p; , {Pj/+1,---,Pm}). Thus,
C' = C"uy, ... ,u—1,0,u41,. .. ,ux] where (C"®) y) € Decomp(s, {pj,... ,Pm}) and p; is the
position of the [th hole in C".

Let I'(o[i —1]) = [p]. Because I' is top-down and no-lookahead, it can be checked that the initial subse-
quence ¥ is the same as the initial subsequence pi'. Observe that Tree(c[i — 1])(py) is a constructor

for 1 < i'" < j" and is not a constructor for ¢’ = j'. By an induction on the steps of o[i — 1..j], for
1 <" < j" it holds that Tree(o[i — 1])(pir) = Tree(a[i — 1])(pir)-

Let v' = v(s) for s € ValPatt(X). Since wrong ¢ Ran(T"), s must match the term up to pj/—1. Then
pj must be an internal position of s. This is a contradiction.

Thus, u —»yx v’ —»yx v, the desired result. O

Appendix A

Figure 2 contains copies of definitions from sections 6 and 7. They are repeated here for ease of reference.
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G(2,0)(s) = NextOrderk, o, ([]) where k = [Skel(s)] and

NextOrders.e.« (8) {[ﬁi,pi_H] if § =[] # wrong and NextPoss, e ([f], s) = pi+1 # wrong,

wrong otherwise,

O(Opty (v, 5), Tree(s) | v)  if Opty(v,s) # wrong,

NextPoss, (7, s) :
wrong otherwise,

Unex(y,s) = minc(Skel(s)\ )
Discs(y,s) = {(s.p,r) | r € Red(X),Vq € Int(r).
p-q € and Tree(s)(p - q) = Tree(LHS(r))(q) }
Invs(vy,s) = {p|(s.q,7) € Discn(v,s),q' € Int(r),p<q-q'}
Possz(y,s) = {(s.p,s =t) | pey\Invs(y,s),s =t € Red(X),
Vg € Int(s"). p- q € v = Tree(s)(p - q) = Tree(s')(q) }
PossUnex(s.p,r) = {p-q|q€Int(r),p-q € Unex(y,s)}
Mands(vy,s) = m PossUnex(s.p, )
(s.p,r)EPossx (v,8)

Unex(7y,s)  if Posss(y,s) =@,

Opty(y,s) = Mands(y,s) if Posss(7, s) # @ and Mandx(y, s) # &,

wrong if Possx(7y, s) # @ and Mands(y, s) = @

Clw] =w
(€™, (15™)) € Decomp(w, P) < {and Skel(C) = {q € Skel(w) | fp e P.p < ¢}
and Tree(C)(P N Skel(C)) = {O}

ValPatt(X) = minc{s; | s >t € Red(X),s = F(5"),1<i<n}
Val(X) ={v(s) | s € ValPatt(XZ), v is a valuation for s}

CtxtsPos(s,p, P) = {C' | (C,x) € Decomp(s, {p} U P),(C’,x") € Decomp(C[il], {p}) }
ContextsMTx(s) = {C'| ValOrder(X)(s) = [p"],2 < i < |Int(s)],
C € CtxtsPos(s, pi, min< ({pi+1,... ,pn} U {p | Tree(s)(p) € MVar }))}

Erea(X) = U, teRea(s) ContextsMTx(s)
Eval(2) = U, evarpare(s) ContextsMTx(s) U {0}
EvalCont(X) = {C[Ci[---[Cu] -] | C € Evar(T), C™ € Evea(T) }
PossVals (f) = {s € ValPatt(Z) | Ip’ € Int(s).f(p') is undefined,
Vp € Int(s).f(p) defined = f(p) = Tree(s)(p)},
MandVals (P, f) = PN (N,cpossvalg (5) 10t(5)),
minjex (P) if PossVals(f) = @,
ValChoose(X)(P, f) = { minjex(MandVals (P, f)) if PossVals(f) # @ and MandVals (P, f) # &,
wrong if PossVals(f) # @ and MandVals(P, f) = @.
ValOrder(X) = G(%, ValChoose(X))

Figure 2: The generic subterm ordering function generator and related functions.
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