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Abstract

We present two worked applications of a general framework that can be used to support reasoning
about the operational equality relation defined by a programming language semantics. The framework,
based on Combinatory Reduction Systems, facilitates the proof of standardization theorems for pro-
gramming calculi. The importance of standardization theorems to programming language semantics was
shown by Plotkin [Plo75]: standardization together with confluence guarantee that two terms equated
in the calculus are semantically equal. We apply the framework to the Ay-calculus and to an untyped
version of the A°™Y-calculus. The latter is a basis for an intermediate language being used in a compiler.

1 Introduction

Optimizing compilers make many transformations in which some program fragment M is replaced by another,
hopefully more efficient, program fragment N. From the operational point of view, such transformations are
justified when fragment N is observationally equivalent to M, i.e., when there are no program contexts in
which distinctions between the two can be observed. The justification of such transformations has been one
of the principal motivations in the development of programming language semantics.

One of the seminal results in this area is the approach developed by Plotkin [Plo75]. Among other
important developments, Plotkin showed how an operational semantics of a programming language can be
associated with an equational theory (or calculus) of program fragments. The equational theory is shown
to be sound with respect to the operational semantics in the sense that fragments equated in the theory are
guaranteed to be observationally equivalent under the operational semantics. A compiler writer is therefore
justified in replacing M with N when equation M = N is in the theory.

In order to use this general approach, one must define both an operational semantics of a programming
language and a calculus of fragments and then establish the appropriate connection between them. In [Plo75]
and many subsequent studies (e.g., [FF89, FH92, Mul92]) the operational semantics and calculus are defined
independently and then connected via a standardization theorem for the calculus. More recently (e.g., [AF97])
it is common to start with the calculus, prove a standardization theorem for it and then simply define the
operational semantics as a restriction of the standard rewriting sequence for the calculus. In either approach,
a standardization theorem for the calculus is required.

Unfortunately, the usual approach to proving standardization for calculi intended for program reasoning
is somewhat unsatisfying. In practice, such proofs have been hand crafted for each calculus (e.g., [FF89,
FH92, Mul92, AF97]). The usually ad hoc nature of such proofs means that proving standardization for a
new language is a laborious and error-prone task of adapting an existing proof to the new language. The

*Corresponding author. Voice: +1 617 552 3964. Fax: +1 617 552 2097. E-mail: muller@cs.bc.edu. This author’s work was
partially supported by NSF grant EIA-9806746 and by a Faculty Fellowship from the Wallace E. Carroll School of Management.

TThis author’s work was partially supported by NSF grant CCR-9417382 and EPSRC grant GR/L 36963. Part of this
author’s work was done while visiting Boston University and part while employed at the University of Glasgow.



process does not usually give much insight into the language and may need to be repeated from scratch if
the rules are changed.

General-purpose methods for standardization have been developed, but have had difficulties. The ear-
lier methods are too weak, e.g., the method of Klop [Klo80] only supports rule sets where evaluation can
proceed from left to right. Some more recent methods are sufficiently general but are at such an abstract
level that they provide little help with the proof burden. These methods include various syntax-free frame-
works [GLM92, KG96]. They do not significantly reduce the burden in comparison with the hand-crafted
approach because the programming language theorist still has to prove that their system satisfies the various
axioms. In practice, this is very difficult problem in its own right.

1.1 Contributions of this Paper

In this paper we present two worked examples of a general framework that supports rigorous proofs of
standardization theorems. The framework, developed in [WMOQ], is abstract enough to handle a large class
of languages, yet it is nevertheless concrete enough that the programming language theorist can embed their
language in it without too much difficulty. The framework uses higher-order rewriting systems (HORS’s),
specifically, combinatory reduction systems (CRSs). Although the framework is developed elsewhere, some
brief remarks about its applicability will be helpful in understanding the handling of the examples in this

paper.

1. Our framework is based on CRSs and using it for a calculus involves formulating a CRS version of the
calculus. There can be immediate benefits to this outside what is provided by our framework, e.g., one
can use standard results for CRSs to prove such properties as confluence.

2. Once the calculus has been formulated as a CRS, if the CRS is orthogonal and a good (satisfying
certain criteria) redex ordering function can be found, then the framework provides a notion of standard
rewriting and a theorem that any rewrite sequence can be converted into a standard one.

3. If a certain property can be shown, then the framework provides a good subterm ordering function
which yields a good redex ordering function. The required property is that the CRS is orthogonal and
the left-hand sides of the rewrite rules are such that when partial matches for more than one left-hand
side can be found, there is always a position to check for the rest of the match which is in common
among all of the partial matches. Programming language calculi generally seem to have this property.

4. If the CRS in addition qualifies as a constructor system, then the framework automatically derives
definitions of values, evaluation contexts, and evaluation directly from the rules of the CRS and provides
the appropriate theorems about these definitions. CRSs that arise in programming language semantics
are often constructor systems.

The contributions of this paper involve applying the framework to two example call-by-value program-
ming language calculi, the well known Ay-calculus of Plotkin [Plo75] and the more complicated (but not
atypical) calculus A“™, a particular A-calculus that is being used as the basis for a compiler intermediate
language [WDMT97, DMTWO97]. In detail, the contributions are:

1. Section 3 shows all of the technical details of how to encode A, and A°™ as two CRSs, £, and Z¢.
The two CRSs are proved to be effectively isomorphic to the original calculi, thereby proving that
results about the CRSs are in fact relevant to the original calculi. In addition, section 3 proves that
Y, and Yoy, are orthogonal. As a side benefit, this proves that all of the systems are confluent.

2. Section 5 proves that ¥, and X, satisfy all of the criteria mentioned above and thereby obtains
Plotkin/Wadsworth/Felleisen-style standardization theorems for these CRSs, thereby showing for each
the consistency of its operational semantics with its rewriting system. Although standardization has
been proven for A, before, this is the first proof of standardization for \¢™.



1.2 Related Work

Standardization of a rewriting system is the property that, for any rewriting sequence, there is another
permutation-equivalent rewriting sequence that contracts the redexes in a nice order which is called “stan-
dard”. One of the important properties of standard rewriting is that it provides a normalizing rewriting
strategy. Standardization was first shown by Curry and Feys [CF58].

There are a variety of methods of proving standardization. Two important methods were devised by
Klop, (1) identifying the “leftmost” (most needed) redex contracted in a rewriting sequence and performing
it first and (2) replacing anti-standard pairs with standard complete developments [K1o80]. We use Klop’s
second method. Huet and Lévy define standard reductions for orthogonal term rewriting systems (TRS’s)
as outside-in reductions, using a leftmost choice function to determine a unique standard reduction for a
permutation equivalence class [HL91a]. Their proof of termination of the standardization algorithm depends
on the disjointness of residuals through arbitrary rewriting sequences, a property of orthogonal TRS’s but
not of orthogonal HORS’s. Gonthier, Lévy, and Mellies proved a standardization theorem for abstract
rewriting [GLM92]. Mellies has done further work on abstract standardization [Mel98].

Other research into standardization includes the following. Jim and Meyer use a combination of Klop’s
first and second method to prove standardization for a variant of PCF and then use that result to prove
the context lemma [JM96]. Suzuki used Klop’s second method to prove standardization for conditional
term rewriting systems [Suz96]. There is some more discussion of Klop’s second method in [vO96]. Khasi-
dashvili and Glauert proved something they call abstract standardization [KG96] and what they call relative
standardization [GK]. Standardization has been used extensively for validating the consistency of an op-
erational semantics with a calculus by Plotkin, Felleisen, Ariola, Friedman, Hieb, Muller, and others not
listed [Plo75, FF89, FH92, Mul92, AF97]. The method of Ariola and Felleisen depends on disjoint redexes
having disjoint residuals.

Higher-order term rewriting has been presented in a number of different formalisms, including several
variations on the format of CRSs [Klo80, Nip91, Kv095, Ken89, vR96, vO94, KvOvR93, Kha90, Tak93,
Wol93].

Because one of the aims of standardization is finding normalizing rewriting strategies, much work on
normalization is related. Huet and Lévy devised the idea of needed redexes, those which must be contracted
in any rewriting sequence to normal form [HL91a, HL91b]. To aid in finding needed redexes, they devised the
notions of sequentiality and strong sequentiality. Klop and Middeldorp provide a quite readable discussion
of strong sequentiality [KM91].

Barendregt, Kennaway, Klop, and Sleep raised the idea of needed redexes to the A-calculus [BKKS87].
Glauert, Khasidashvili, Nocker, and Middeldorp have all written about “normalization” to sets of terms that
are not exactly normal forms [GK, N6c94, Mid97]. Van Raamsdonk showed that the outermost-fair (multi-
step) strategy is normalizing for some HORS’s [vR96]. Kennaway, Antoy, and Middeldorp have devised 1-step
normalizing rewriting strategies for “non-sequential” systems [Ken89, AM96]. Sekar and Ramakrishnan have
another approach to normalization [SR93].

1.3 Overview

Section 2 summarizes mathematical nomenclature and defines combinatory reduction systems (CRSs). Sec-
tion 3 presents the two A-calculi, defines their corresponding CRSs and proves confluence results. Section 4
summarizes the definitions and salient theorems from [WMO00]. Subsection 4.2 summarizes the details of
obtaining good redex ordering functions via a subterm ordering function generator which is parameterized
over the CRS. Subsection 4.3 summarizes the details of deriving a notion of evaluation for certain construc-
tor CRSs. Section 5 applies the results of the previous sections to the problem of verifying the desirable
properties of the programming language calculi A, and A“™.



2 Preliminaries

2.1 Mathematical Preliminaries

Most of the notation presented in this subsection is quite standard and is given here only to avoid ambiguities
over minor differences in usage. However, some of the notation here is new.

Abbreviations for Sequences The notation @ abbreviates the notation ag,as, - - where the number of
items is unspecified or clear from the context. The notation @™ abbreviates the notation ay, ... ,ay,.

Binary Relations A binary relation R is any set of pairs. Let R range over binary relations. The
statements R(a,b) and a R b mean the same as (z,y) € R and the expression ®! denotes the relation
{(b,a) ]| (a,b) € R}. A relation R is transitive iff R(a,b) and R(b,c) implies R(a,c). A relation R is anti-
symmetric iff R(a,b) and R(b,a) implies a = b. A relation R is reflexive on some set S iff R(a,a) for every
a € S. A relation R is irreflexive iff R(a,b) implies a # b. A relation R is well founded iff there is no infinite
sequence a1, as, as, - - -, such that $(a;, a;11) for alli > 1.1 A relation R is finitely branching iff {b | R(a,b) }
is finite for all a.

Functions A function f is a binary relation such that if (a,b) € f and (a,c) € f then b = c¢. In this
case, we write the pairs in f in the form (a — b). Given a function f and a value a, if a value b exists
such that (a — b) € f, then f(a) denotes the value b, else f(a) is undefined. The domain of definition of
a function f is DomDef(f) = {a | (a — b) € f} and the range of f is Ran(f) = {b| (a—b) € f}. The
assertion f :S; — Sy holds whenever DomDef(f) C S; and Ran(f) C Sa, in which case we can call S; and
S respectively a domain and a codomain of f. A function f is total w.r.t. a domain S iff DomDef(f) = S.
Given set S, if S C DomDef(f), then f(S) = { f(a) | a € S}, otherwise f(S) is undefined. The restriction
of a function f to a set S is the new function f | S = {(a+b) | (a = b) € f,a € S}. The composition of
functions f and g, notation f o g, is the function such that (f o g)(x) = f(g(x)). The n-fold composition
of a function f is the function f™ such that f"(a) = f(f"'(a)) if n > 0 and f%(a) = a. The expression
fla — b] denotes the function (f\ {(a—¢) | f(a) =c})U{(a—b)}.

Orders An order O is a transitive and anti-symmetric binary relation. An order O is a partial order
on set S iff O is reflexive on S. An order O is a total order on set S iff O is a partial order on S and
O(a,b) or O(b,a) for every a,b € S. When we use a symbol for a partial order like < or < or <, possibly
superscripted or subscripted, the removal of the bottom line, e.g., <, flipping the symbol, e.g., >, and
slashing the symbol, e.g., £, have the usual meaning. The set of minimal elements of a set S w.r.t. an order
Oisminp S ={a|lacs, Abe S.0(b,a) and b # a}. If the context guarantees that mino S = {a} will be
a singleton set, we may freely use minp S as the value a.

Strict Orders An order O is strict iff O is irreflexive. A strict partial order is any strict order. An order
O is a strict total order on set S iff O is strict and O(a,b), O(b,a), or a = b for every a,b € S. (Following
an unfortunate tradition, a strict partial order is not a partial order and a strict total order is not a total
order.)

Sequences The expression (aj,as,...) is the sequence of a;, as, ... treated as a single object. The
expression () denotes the 0-length sequence. Given a set S, the expression S™ denotes the set of sequences
{(@") | {@a"} C S}. Given sequences x; = (@") and x2 = (b1, bs,...) where the first sequence is finite, the
expression 1 - x2 (the concatenation of x; and x2) denotes the sequence (@™, by, bo,...). Given a sequence
X, the expression |y| evaluates to the number of elements in x if x is finite and evaluates to w if x is infinite.
We consider only countable sequences. If a sequence (a1, as, . ..) is used in a context requiring a set, we treat

deally, this notion would say that ® has no infinite descending chains. But which direction is descending, to the left or
to the right? This differs between relations, e.g., < descends to the left and > descends to the right. Because associating a
direction for “descent” with each relation seems too painful, we follow Baader and Nipkow [BN98, p. 14] in stating that descent
is to the right. Some others have chosen that descent is to the left, e.g., Taylor [Tay99, p. 97].



it as the set {a1,as,...} (where duplicates have the same effect as a single occurrence). We write [a1, az, . . ]
for a sequence that has no duplicates, i.e., where a; # a; if i # j.

Relations and Orders from Sequences Given a sequence x = (ai,as,...), the statement a; <, a;
holds iff i < j. If x is a sequence with no duplicates, i.e., it can be written as x = [a1,a2,...], then <, is a
strict total order on the set of elements of y. In this case, we may refer to the sequence x as a strict total
order.

Lexicographic Order If O is a strict order, then its lexicographic extension Oex is the strict order on
sequences such that Ojex(x1,x2) iff there exists some common prefix x such that x1 = x - x1, X2 = X - X5,
and either x| = () # x4 or x} = (a,...), x4 = (b,...), and O(a,b). Observe that if O is a strict total order,
then Olex is a strict total order. Let minjex stand for min,__ .

Naming Conventions When using symbols to range over various kinds of entities, we follow the following
conventions:

a,b,c, X arbitrary entity f function

i,7,k,l,m,n natural number P, q path

r reduction rule s,t metaterm

u, v term w preterm

z,Y,2 term variable c context

E evaluation context F,G,H,I function symbol

F piece of evaluation context M,N term of A, or A¢II

(0] order P set, of paths

R set of reduction rules R renaming of metavariables

S set 1% value (restricted term of A, or A°™)
VA CRS metavariable R binary relation

y subterm ordering ) subterm ordering or “wrong”
X sequence v valuation

r subterm ordering function A redex occurrence

by combinatory reduction system

2.2 Combinatory Reduction Systems

This section defines combinatory reduction systems (CRSs). We use the functional presentation of combina-
tory reduction systems [KvOvR93] rather than the original applicative presentation [Klo80]. Both ways of
presenting CRSs have the same expressiveness. They differ in minor ways such as the number of “garbage
terms” that must be ignored and how to determine the head symbol of a redex. We find it much easier to
rigorously prove theorems using the functional CRS presentation.

For those familiar with CRSs, the non-standard bits are (1) the definition of the tree of a term, (2) the
definition of subterm occurrence, (3) the definition of valuation, (4) the restriction requiring reduction rules
to be fully extended, and (5) some notation for reduction sequences.

2.2.1 Basic CRS Definitions
Alphabet The alphabet used in constructing the preterms of a CRS consists of the following:

1. The countably infinite set Fun of function symbols. Let F', G range over Fun.
2. The countably infinite set Var of (ordinary) variables. Let x, y, z range over Var.
3. The countably infinite set MVar of metavariables. Let Z range over MVar.

4. The symbols “(77’ “)77’ “[7), ((]77’ “D” and “’7)-



Each function symbol F' or metavariable Z has a fixed arity, written Arity(F') or Arity(Z). There are an
infinite number of functions symbols and metavariables of each arity. The arity will often be indicated by
writing F(") or Z(™ in a statement, which is equivalent to writing merely F or Z and adding the side
condition that Arity(F) = n or Arity(Z) = n. The arity will usually be obvious. Ordinary variables are
considered to have arity 0. Let <™ be some fixed strict total order on MVar such that >™" is well founded.

Preterms The set PTer of preterms is the smallest set satisfying the following conditions. Let w range
over preterms.

1. If = € Var, then x € PTer.
2. If £ € Var and w € PTer, then [z]Jw € PTer.

3. If F™ € Fun and {@"} C PTer, then F (") € PTer.
4. If Z") € MVar and {w"} C PTer, then Z(«#") € PTer.
5. O € PTer.

All free occurrences of = in w are bound in [z]w. If X(®) € Fun UMVar, then the preterm X() may (and
usually will) be written as just X. Below, the sets of contexts, metaterms, and terms will be defined as
subsets of PTer.

Paths The set P of paths is the set of sequences over N (the natural numbers). We generally write a path
as ig - ... - i, rather than (ig,...,4,). In a context requiring a path, the number 7 is implicitly coerced to
the 1-length path (i). Let p, ¢ range over paths, let P range over sets of paths, and let € denote the 0-length
path. The prefiz partial order on paths is the order < such that p < ¢ (“p is a prefix of ¢”) iff there exists a
path p' such that ¢ = p-p'. The statement p | ¢ (“p is incomparable with ¢”) means p £ ¢ and ¢ £ p.

Tree of a Preterm The tree of a preterm w is an alternate representation of the essential information
in w. The function Tree is the least-defined partial function from PTer to P to Fun U Var U MVar U
{[X]| X € VarU{e} } UP U {0} such that:

1. Tree(z) = {e — x}.

] if p = ¢ and 3g. (Tree(w)(q) = O and B¢’ < g. Tree(w)(¢) = [z]),
) e] if p =€ and Ag. (Tree(w)(¢) = O and A¢’ < q. Tree(w)(q') = [z]),
2. Tree([zlw)(p) = Tree(w)(q) if p=1-¢ and Tree(w)(q) # =z,
D if p=1-q and Tree(w)(q) = x.
3. For X(™ ¢ Fun U MVar,
n X if p=ce,
Tree (X(@™)) (p) = {Tree(wi)(q) ifp=i-gqand 1 <i<n.

4. Tree(d) = {e — O}.

The skeleton of a preterm w is Skel(w) = DomDef(Tree(w)). A position p is bound at q in w, written
BindPos(w,p) = ¢, iff p = ¢ - p" and Tree(w)(q) = [X] for some X € Var U {e} and Tree(w)(p) = p'.



Here are three examples of the trees of preterms:

Preterm w:  Q(A([2]Z1(2)), Z2)  [zllyly  [«]F([z]H(z, ), [2][y]G(O, z))

1 o o0
[ ] T
Tree(w): (o] (o] | |
| | H [y]
Zy 1 |
| 1.1 1.1.12 G
1.1
1.1.2

A binding is recorded in the tree as “[#]” to ignore the name of the bound variable when its name is irrelevant.
A binding is recorded as “[z]” only when there is at least one hole in the scope of the binding such that
filling the hole by a preterm w with free variable x should result in the capture of the free variable by the
binding. Bound variables are represented by the path from the internal node of the binder to the leaf node
of the bound variable. De Bruijn indices or some similar scheme could have been used instead, but it turned
out to be quite convenient to record the actual path from the binder to the variable.

Quotienting by a-Conversion The statement w = w’ (“w and w' are tree-equivalent”) means Tree(w) =
Tree(w'). For preterms without holes, tree-equivalence corresponds exactly to the standard notion of a-
conversion. For preterms with holes, for which a-conversion is not usually defined, tree-equivalence gives the
best possible definition of a-conversion.

Convention 2.1. Throughout the rest of this article, tree-equivalent preterms are considered equal. O

In interpreting this convention, the reader can think of the set PTer as really being a set of trees of the
form given above rather than as a set of syntactic entities. The “=” symbol is used instead of “=" to avoid
confusion with equality on the syntactic entities used to write preterms and equality w.r.t. an equational
theory.

Metaterms, Terms, and Contexts The set MTer of metaterms is the subset of PTer containing all of
the preterms which do not mention O. Let s and ¢t range over metaterms.

The set Ter of all terms is the subset of MTer containing all of the metaterms which do not mention
metavariables. Let v and v range over terms.

The set Ctxt of contexts is the subset of PTer containing all of the preterms which mention “0” (the
hole). Let C range over contexts. Unless otherwise specified, a context is assumed to have exactly one hole.
The arity of a context is the number of holes in the context. Given a context C, its arity n (respectively
the position p of its unique hole if it has only one) may be indicated by writing C(™ (respectively C?)
in a statement, which is equivalent to writing merely C' and adding the side condition that Arity(C) = n
(respectively Arity(C') = 1 and Tree(C)(p) = O). If Arity(C) # n, then C[i/"] is undefined, otherwise C[w™]
denotes the result of replacing all of the occurrences of O in C' by wy, ..., w, in order from left-to-right,
possibly capturing free variables of w.

Variables The set of metavariables occurring in a preterm w is MV(w) = Ran(Tree(w)) N MVar. The
statement DMV (w,w") (“w and w’ have disjoint metavariables”) holds iff MV (w) N MV (w') = @. For a set
of preterms S, the statement DMV (S) holds iff DMV (w,w') holds for every w,w’ € S such that w Z w'.
The set of (ordinary) variables occurring free in a preterm w is FV(w) = Ran(Tree(w)) N Var.

Subterms and Subterm Occurrences A preterm w' is a subterm of a preterm w, written w' < w, iff
there is a context C such that w = C[w']. Quite different from a subterm, a subterm occurrence is specified
by its position. If p € Skel(w), then w.p denotes the subterm occurrence in w at position p. We write



wi1.py = ws.p2 to mean that w; = we and p; = po. When the context of discussion makes the preterm w
obvious, p will sometimes stand for w.p.

REMARK 2.2. If w = CP[w'], some researchers will use w’ to stand for subterm occurrence w.p. We avoid
this because it can be ambiguous in two ways: (1) there may be another position ¢ # p and context C{ such
that w = C}[w'] and (2) there may be another context C% and metaterm w" such that w = C¥[w"], where
w' and w" differ only in the names of free variables which are bound by C? and C%. O

Valuation A wvaluation is a function v from MVar U Var to MTer such that for each X € DomDef(v) of

arity n, the metaterm v(X) mentions only metavariables in the distinguished set {Z §°>, e ,ZA%O)}. (These
distinguished metavariables play the part of the parameters of substitutes as used in other formulations of
CRSs [Kah94].) Given valuation v, let FV(v) = DomDef(v) UUxepompern) FV(#(X)). A valuation for
metaterm s is a valuation v such that DomDef(r) O MV(s). The application v(s) of a valuation to a
metaterm is the term »'(s) where v’ is the function from MTer to Ter defined as follows.

1 V() = x if v(x) is undefined,
LV (z) =
v(z) otherwise.

2. V([z]t) = [2']V'(¢') where [z]t = [2']t' and 2’ ¢ FV(v). We can always find such an 2’ and t' by
a-conversion and it does not matter which ones we use.

3. V(F(3") = F(V/(s1), ...,V (sn)).
4. V(Z(3") = v"(u(Z)) where v = {2\ — v/ (s;)) |1 <i<n).

For compatibility with traditional substitution notation, let ¢t[X;:=s1,...,X,:=s,] stand for v(t) where
v={X1; = 51,...,Xn+ Sp}.

REMARK 2.3. Our definition of valuation differs from earlier definitions (e.g., [Klo80] and [KvOvR93]) in
that (1) it uses a different (but equivalent) mechanism to handle the replacement of metavariables of arity
greater than 0 and (2) it also allows replacing ordinary variables because it is needed in more situations. [

Reduction Rule A pattern is a metaterm s such that any metavariable Z(™) occurs in s only in the form
Z(Z™) where 1, ..., x, are n distinct (ordinary) variables. A reduction rule r is a pair s — t of metaterms
satisfying the following conditions.

1. The metaterm s is a pattern.
2. The metaterm s is of the form F(5™) for some function symbol F.

3. Both s and t are closed, i.e., in s and ¢ each (ordinary) variable z occurs in the scope of a matching
binder [z].

4. Any metavariable which occurs in ¢ also occurs in s.

For r = s — t, let LHS(r) = s (the left-hand side) and RHS(r) =t (the right-hand side).
A position p is internal in pattern s iff p is the position in s of a function symbol, a binder, or an ordinary
variable which is not a child of a metavariable. Formally, this is written p € Int(s) and defined as follows.

Int (s) = {p | Tree(s)(p) € Fun U {[e]} }
U {p]| Tree(s)(p) € PUVar,(p =cor (p=q-i and Tree(s)(q) ¢ MVar)) }

This notion is extended to reduction rules so that for rule r = s — ¢ it holds that Int(r) = Int(s) and position
p is r-internal iff p is internal in s.



Rules Differing Only by Metavariable Names Two metaterms s; and sy are the same up to metavari-
able renaming, written s; ~ so, iff 5o is the result of renaming the metavariables in s; in a one-to-one manner.
For metaterms that are the same up to metavariable renaming, we will define a strict total order to support
the purpose of arbitrarily choosing one of them. Let s; < s5 hold iff s; ~ sy and (Z) <™ (Z') where (Z)
and (Z') are the sequences of metavariables occurring respectively in s; and s», in the order of occurrence
from left to right.

We extend these notions to reduction rules as follows. Let F(2) be some fixed function symbol. Let
r=s — tand r = s — t be reduction rules. Then r ~ r' iff F(s,t) ~ F(s',t') and r <« ' iff
F(s,t) 4 F(s',t'). Let LeastUpToRenaming(r) = ming{r' | r ~r'}.

Reduction Relation Let r be a reduction rule s — ¢, v a valuation for s, C? a term context, and u and
v terms. If u = CP[v(s)] and v = CP[v(t)], then define the following.

1. The term v(s) is an r-redez term and v(t) is its r-contractum term.

2. The subterm/rule pair A = (u.p,r) is a redex (occurrence).

3. The term u reduces to its reduct v by contracting A, written u Ay 0.

4. The triple u 25 v, also written (u, A, v), is a reduction step.

5. Equivalent variations indicating the rule r are u A),, v and u &, v.

If R is a set of reduction rules, u Am v means u An v for some r € R. For X which is either a rule r or a
rule set R, we write u —>x v to mean u 2 x v for some unspecified A. The transitive, reflexive closure
of —rx is —»x. A term u is in normal form w.r.t. rule set R, written R-nf(u), iff there is no term v such
that u —g v. A term u has R-normal form v, written u 255 v, iff w —» 5 v and R-nf(v). If A = (u.p,r),
A" = (u.q,r"), and R is a relation on paths, then A ® A" iff p R q. The equational theory of R, written =g,
is the least equivalence relation on Ter containing — .

Reduction Sequence A reduction sequence o is an alternating sequence of terms and redex occurrences
beginning with a term such that (1) every 3-element subsequence of the form (u,A,v) is a valid reduction
step and (2) o either ends with a term or is infinite. We write ¢ = u — v to indicate both the initial
and final term and ¢ = u —» --- to indicate only the initial term. The length of a reduction sequence,
written |o|, is the number of reduction steps it contains (w for infinite sequences). The expression o[i..j] for
0 <i < j < |o| denotes the subsequence of ¢ starting with the ith term (where terms and steps are both
numbered starting with 0) and ending with the jth term and ofi..] denotes the suffix starting with the ith
term. Let o[i] be the ith term in 0. We write 0 ~ ¢’ iff 0 and o' are coinitial and cofinal, i.e., 0[0] = o’'[0]
and of|o|] = o'[|0'|]. Given o = (ug, Ao, u1, A1, us,...) where A; = (u;.p;,7;), we will sometimes write this
aso =ug 2%, ug &5, us---. Giveno = (... ,u) and o' = (u,...), their concatenation oxo'is (... ,u,...).
Given rule set R, a reduction sequence ¢ is an R-reduction sequence iff the rule of every redex occurrence
in ¢ belongs to R.

Combinatory Reduction System A combinatory reduction system (CRS) X is specified by a set of
terms Ter(X) and a set of reduction rules Red(X) (sometimes called rewrite rules). The set of terms Ter(X)
is some subset of Ter which must be closed under the reduction relation —geq(x), i-e., if 4 —Req(z) v
and u € Ter(X) then v € Ter(X).? In contexts in which a set of rules is required, we may use ¥ to
stand for Red(X), but when forming a reduction relation we restrict it to terms in Ter(X), e.g., —x =
{(u,v) | 4 —>Rea(n) v and u,v € Ter(¥) }. The equational theory =sx is similarly restricted to Ter(X). This
is the only way the restriction to terms in Ter(X) affects the reduction relation.

2Previous definitions of a CRS required giving for a CRS ¥ some fixed set S of function symbols and using all the terms that
can be generated with those function symbols, i.e., setting Ter(X) = { u | v € Ter,Fun(u) C S} where Fun(u) = Ran(Tree(u))N
Fun. Further restricting the set of terms was called a substructure CRS by Klop [K1080] and [KvOvR93]. Our definition makes
this the default case, because in practice it is nearly always necessary to do so.



2.2.2 Restrictions on CRSs

Fully Extended A pattern s is fully extended [HP99, vR96, Def. 4.2.51] iff for any metavariable occurrence
Z(Z) in s, the sequence ¥ includes as many variables as possible, i.e., for each binding of some variable x
whose scope includes the metavariable occurrence, x is one of £. A reduction rule s — ¢t is fully extended iff
s is fully extended. A CRS X is fully extended iff each reduction rule r € Red(X) is fully extended.

Convention 2.4. Throughout the rest of this article, reduction rules (and therefore also CRSs) are restricted
to be fully extended. O

Constructor Systems A CRS X is a constructor CRS iff there exists a set FCon(X) of constructors and
a set FDes(X) of destructors® such that both of the following conditions hold.

1. The constructors and destructors partition the function symbols, i.e., FCon(X) U FDes(X) = Fun and
FCon(X) N FDes(X) = @.

2. For any rule r € Red(X), the root function symbol of LHS(r) is a destructor and any other function
symbol in LHS(r) is a constructor. Formally, if r € Red(X) and Tree(LHS(r))(p) = F, then p = ¢ =
F € FDes(X) and p # € = F € FCon(X).

Left-Linear Rule A metaterm s is linear iff every metavariable in s occurs in s exactly once. A reduction
rule s — t is left-linear iff s is linear. A set of reduction rules R is left-linear iff every reduction rule r € R
is left-linear.

Ambiguous Rules Given metaterms s and ¢ and position p € Int(t), it is said that s interferes with t at p
iff there exist valuations v and v/ for respectively s and ¢ and a term context C? such that Clv(s)] = v'(t).2
This interference is at the root iff p = €. Distinct reduction rules s — t and s’ — t' are ambiguous (sometimes
called overlapping) whenever s and s’ interfere. A reduction rule s — t is ambiguous with itself whenever s
interferes with itself provided the interference is not at the root. A set of reduction rules R is ambiguous iff
there exists an ambiguous pair of rules r,7' € R (where r and 7' may be the same rule).

Orthogonal CRS A CRS X is orthogonal (also called regular) iff the set of reduction rules Red(X) is
left-linear and non-ambiguous.®

Theorem 2.5 (Confluence of Every Orthogonal CRS). If ¥ is orthogonal, u —» 5, v1, and u —»x va,
then there exists u' such that v; —»x u' and vy —»x u'. O

Proof. See [Klo80] or [KvOvR93]. O

3 Two Calculi and Their Representations as CRSs

This section presents two example programming language calculi, the A -calculus [Plo75] and the \®'L-
calculus [WDMT97]. The technology described in section 4 will be used to obtain definitions of evaluation
for A\, and A and standardization theorems for A, and A'*. Because the technology in section 4 requires
orthogonal constructor CRSs, the CRSs ¥, and Y are defined in sections 3.1.1 and 3.2.1 and proven
equivalent to A, and A°™" in sections 3.1.2 and 3.2.2. Although not the primary goal of this paper, this
section makes an important contribution by giving examples of how to represent calculi as CRSs and to
verify that the representations are faithful.

3These are sometimes called functions, but we avoid that terminology due to the ambiguity with “function symbol.”

4This definition is equivalent to the definitions of [Klo80] and [KvOvR93] for metaterms which can be LHS’s of reduction
rules, but differs in how it is stated. Note that the definition of interference would be the same even without our restriction to
fully extended reduction rules.

5The definition given here considers valuations producing terms that are outside of Ter(X) when determining the ambiguity
of Red(X). The definition could be changed to avoid considering such garbage terms, but doing this without breaking something
would make the definition very messy.
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3.1 ),, the Call-By-Value Lambda Calculus

Syntax
T,Y,% € Var

C € Contexty,
M,N,P € Term,,

O|lz | CC | AxC
{C'| O does not occur in C'}

Ve Valueyn, == z | dz.M
Reduction Relations
(Ax. M) V ~>y, Mz :=V] Redex/Contractum
CIM] —, CIM'] iff M ~y\, M’ One-step Reduction

Figure 1: The A,-calculus.

The first application of this paper will be the Ay-calculus of Plotkin [Plo75]. The A-calculus was de-
veloped to capture the essence of call-by-value evaluation. This subsection presents the A -calculus and
develops an equivalent orthogonal CRS X, which is a constructor system. The equivalence together with the
orthogonality of X, yields confluence theorems for both ¥, and the Ay -calculus. In section 5.1 we use the
results of the preceding sections to show that both X, and the A -calculus have a standardization property.

Figure 1 defines the Ay-calculus. We adopt the usual conventions that the scope of a A-binding extends as
far to the right as possible and that application is left-associative. We use the standard notation, M[z:=M'],
to denote the substitution of M’ for free occurrences of x in M, renaming bound variables in M as necessary
to avoid capturing free variables of M'. We identify terms that are a-convertible. We write M = M’ to
indicate equality on terms instead of M = M’ to remind the reader that a-equivalent terms are considered
equal and to avoid confusion with the use of M = M’ to indicate convertibility in the calculus. Given that
C' is an n-hole context, the expression C [M "] denotes the term that results from replacing the holes in C
by M™ from left to right, possibly capturing free variables in the terms M". We write C; = C, iff C; and
C, have exactly n holes and for all M™ it holds that C,[M™] = C,[M™"]. The symbol —»,. denotes the
reflexive and transitive closure of the — )  relation. Let § range over A,-redexes, i.e., terms of the form
(Ax.M) V. A A\y-redex occurrence is a pair (C, ) where C is a one-hole context and 0 is a A,-redex. Let A
range over A,-redex occurrences. Following the convention established for CRS reduction steps in section 2.2,
the notation M 2 A, IV means that N is obtained from M in one step by the contraction of A.

3.1.1 The CRS 3%,

Reduction Rule of X,
T8, = Q(val(X([z]Z1(2))), val(Z2)) = Z1(Z2)

Red(Zv) = {rs, }

Translation Function from Context),
T.(0)=0
Te(z) = va

(Az.C) = val(A([z]T+(C)))

Tv
To(C1 C2) = Q(T+(C1), T+(C2))

—

—~
8

N

Translation of Redex Occurrences
7w ((C,6)) = (TW(O)[T(6)]-p, 73,) where Tree (7.(C)) (p) = DO

Terms of X,

Ter(3.) = Tv(Termy, )

Figure 2: The CRS .

Figure 2 defines the combinatory reduction system ¥, which is intended to correspond to A, .
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We begin by showing that ¥ is a well defined and orthogonal CRS and that it is in good correspondence
with A,.

Lemma 3.1.

1. Ty is a bijection between Contexty, and Ty(Contexty, ).

2. Ty | Termy, is a bijection between Termy, and Ter(Zy). O
Proof.

1. That 7, is injective when used with domain Contexty, can be determined by inspecting its definition
and observing that a-conversion works the same way in A, and X¢. The function 7 is surjective on
Ty (Contexty, ) by definition.

2. Same.
Lemma 3.2. The translation of \y-redex occurrences is well defined.
Proof. Immediate for the definition.

Lemma 3.3. If C € Contexty, has one hole and M € Termy_, then T, (C)[Te(M)] = Ty (C[M]).

O O o o O

Proof. By induction on C.
Lemma, 3.4 relates redex terms in A, to redex terms in X, .

Lemma 3.4. Let s = LHS(rg,) and let 6 be a Ay-redex term. Then there exists a valuation v for s such

that Ty (6) = v(s). O
Proof. Suppose 6 = (Az.M) V. Then T,(0) = Q(val(A([z]Ty(M))), val(v)). Define the valuation v =
{Z1 = To(M)[x:=21], Zo — v}. Tt is simple to check that v(s) = T, (). O

Entities in X, will now be related back to entities in A,. Lemma 3.7 addresses the well-definedness of
T, '. Lemma 3.8 relates redexes in X, to the corresponding entities in A,. In this sense, it is the converse of
lemma 3.4.

Definition 3.5 (Nice). In reasoning about A, and ¥, a preterm w € PTer is nice iff w € T, (Contexty, ).
As derived notions, a term u € Ter is nice iff u € Ter(X,) and a context C € Ctxt is nice iff C' €
T (Contexty, ) N Ctxt. O

Lemma 3.6.

1. If val(A([z]u)) is nice, then u is nice.

2. If Q(uy, us) is nice, then uy; and us are nice. O
Proof. Immediate from the definition of 75 . O
Lemma 3.7.

1. If term u and one-hole context C' are nice, then T, (Clu]) = T, (C)[T (u)].

2. For one-hole context C, if C[Q(uy,uz)] is nice, then C and Q(uy,uz2) are nice. O
Proof.

1. By induction on C' using lemma 3.6.

2. By induction on C, using the definition of 7. O

Lemma 3.8. Let s = LHS(rg,) and let v be a valuation for s such that v(s) is nice. Then:
1. T (v(s)) is a Ay-redezx, and
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2. v(Zi(x)) and v(val(Zz)) are nice. O
Proof.

1. Similar to lemma 3.35 (1).

2. By several uses of lemma 3.6. O
Lemma 3.9. If v(Z(z)) and val(u) are nice, then v(Z)[Zy:=u] is nice. O

Proof. From the first precondition it follows that there exists an s such that v(Z;(z)) = s[Zy := z] and that
for any p if Tree(s)(p-1) = Z;, then Tree(s)(p) = val. From the second precondition it follows that w is
either a variable or a term of the form A([z]u') where u’ is nice. The claim follows from these facts. O

Lemma 3.10. Let s -t =rg_, let v be a valuation for s, and let v(s) be nice. Then v(t) is nice. O

Proof. First, observe that v(t) = v(Z1(Z2)) = v(Z1)[Zy := v(Z>)]. Since v(s) is nice, by lemma 3.8 (2),
v(Zy(x)) is nice and v(val(Z;)) is nice. The result then follows by lemma 3.9. O

Lemma 3.11 (Closure under Reduction).
Ter (L) = Ter (Sy) U{ v | u € Ter(Sy),u — Reda(s,) v } - O

Proof. 1t suffices to show that if w is nice and u —Req(s,) v, then v is nice. Suppose u is nice and
U —Red(x,) v- It must hold that u = C[v(s)] and v = C[v(t)] where s =t = rg,, C € Ctxt, and v is a
valuation for s. By lemma 3.7 (2), C' and v(s) are nice. Then v(t) is nice by lemma 3.10. Finally, v is nice
by lemma 3.7 (1). O

Corollary 3.12. X, is a CRS.

Lemma 3.13. X, is a constructor CRS with FCon(X,) = {val, A} and FDes(X,) = {@}.
Proof. Obvious.

Lemma 3.14 (Orthogonality of ). X, is an orthogonal CRS.

Proof. Red(Xy) is left-linear and unambiguous.

Theorem 3.15 (Confluence of ¥,). X, is confluent.

O 0o oo oo O™

Proof. Theorem 2.5 and lemma 3.14.

3.1.2 Correspondence between )\, and ¥,

This subsection will show a precise correspondence between A\, and X,. Specifically, it is proven here
that the terms and reduction relation of ¥, are isomorphic to the terms and reduction relation of Ay,
ie., (Termy,,—»,) and (Ter(X,), —y,) are isomorphic. The precise correspondence given here allows
transferring results (e.g., confluence) obtained for X, back to .

REMARK 3.16. When the edges of the rewrite relations are annotated with redex occurrences, there is no
longer an isomorphism. Our method of identifying redex occurrences in A, allows many context/redex
pairs to identify the same redex position. For example, the context/redex pairs (A\z.O, (\y.z)(A\y.x)) and
(A\z.0, (A\y.z)(A\y.2)) are distinct but identify the same redex position in the same term, (Az.(Ay.z)(Ay.z)).

O
Lemma 3.17. 75 is a surjection from A -redex occurrences to X -redex occurrences. O

Proof. Let A = (u.p,75,) be a ¥y-redex occurrence. It must be the case that u = C[v(s)] where s = LHS(r3,)
for some context C' and some valuation v for s. By the definition of ¥,-reduction, u is nice. Because v(s)
must have function symbol @ in outermost position, C' and v(s) are both nice by lemma 3.7 (2). Thus, there
exists a C' € Contexty, such that C = 7,7 '(C) and, by lemma 3.8, there exists a A,-redex § = 7, (v(s)).
Then 7 ((C,4)) = A. O
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Lemma 3.18 (Substitution). Let 7.(V) = val(u). Then Ty (M[z :=V]) = T, (M)[z := u]. O
Proof. By induction on M. See lemma 3.43 for a sample of the necessary reasoning. O

Lemma 3.19 (Redex Simulation). Let s >t = rz,. Then § ~»x, P iff there ezists a valuation v for s
such that Ty (0) = v(s) and T, (P) = v(t). O

Proof. We prove the two directions separately.

= Let 0 = (Az.M) V, let P = M|z :=V], and let val(v) = T,(V). It is easy to calculate that 7 (4) =
Q(val(A([z]Ty (M))), val(v)). Using valuation v = {Z; TV( VMz:=2Z1], Z = v}, it is easy to check
that 7, (8) = v(s). For the RHS, v(t) = Ty (M)[x:=21][Z1:=v] = To(M)[z:=v]. Using lemma 3.18, it
holds that v(t) = Ty (M)[z:=v] = Ty (M[z:=V]) = T+ (P), as required.

< Suppose there exists a valuation v = {Z; — s, Zy — v} such that 7,(d) = v(s) and T, (P) = v(t). It
must hold that v(s) = @(val(A([z]v")), val(v )) where v/ = §'[Zy:=2] and v(t) = §'[Z1:=v] = v'[z:=0].
It must be the case that 6 = (Az.M) V for some M and V such that 7,(M) =" and Ty (V) = val(v).
By lemma 3.18, it holds that Ty (M|[z := V]) = v'[z := v] = v(t) = To(P). By lemma 3.1 (2), it holds
that M|z := V] = P, so therefore § ~»), P, as required. O

Lemma 3.20 (Reduction Simulation). M &, N iff T,(M) RECING T (N). O

v

Proof. Let s—t =15, let A = (C,0), let u = Ty (M), let v = T, (N), let C? = T,(C), and let A’ = (u.p,r5,).
We prove the two directions separately.

= Suppose M 2, N. Thus, for some P it holds that M = C[)]

, N = C[P], and 6 ~»», P. By lemma 3.19,
there exists a valuation v for s such that 75 (6) = v(s) and Ty (P)
Tu(

v(t). By lemma 3.3 it holds that u =
A) = (Cl(s)].p,rs,) = (up,rp,) = A'.
v, which is the desired result.

) =
Clv(s)] and v = C[v(t)]. Because v(s) = Ty(6), it holds that 7y

By the definition of Ey-reduction, u = C[v(s)] A’)ZV Clv(t)]
< Suppose Ty (M) Mg To(N),ie., u M}g v. Because it is supposed that 7, (A) is a well defined X, -
redex occurrence, it must be the case that there is some valuation v for s such that 7, (A) = 7, ((C,9)) =
(Clv(s)]-p,r5.) = (u.p,rs,) = A’ where it must hold that T (8) = v(s) and that u = C[v(s)]. It must
also hold that v = C[v(t)]. By lemma 3.10, v(t) is nice. Let P = 7.'(v(t)). By lemma 3.19 it
holds that & ~»y, P. Because Tv(M) = u = C[v(s)] = Tv(C)[T+(8)], by lemma 3.7 (1) it holds that
M = C[f]. Similarly, because Ty (N) = v = C[v(t)] = To(C)[T+(P)], by lemma 3.7 (1) it holds that

N =CI[P]. By definition, M 25, N, which is the desired result. O
Theorem 3.21 (Confluence of \,). )\, is confluent. O
Proof. Theorem 3.15 and lemmas 3.20 and 3.17. O
3.2 ACI

Our second application is the A{“-calculus [WDMT97], an untyped version of the typed A-calculus

The latter serves as a foundation for a compiler intermediate language [DMTW97]. In the remainder of this
paper we will refer to the untyped version of the calculus simply as A&,

Figure 3 defines the A®™-calculus. Like \,, the calculus has variables, abstractions, and applications. In
addition, it includes constants, recursive terms, tuples, tuple projections, injections, and a case-dispatch form.
Notation in this section is generally a straightforward adaptation of the corresponding notation presented in
subsection 3.1. For example, in this section the symbol —»,c. denotes the reflexive and transitive closure
of the —,cm relation, the notation M[z := N] denotes the capture-free substitution for A'“-terms. The
reader will also note that we are recycling metavariables M, N, V, etc., all of which stand for A°'" entities
when appropriate.

)\CIL
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Syntax
¢ € ConstyciL

C € Contextyc == O|c|z|recz.C | Xx.C | CLQC;
| x(Cy,...,Ch) | m C
| in; C | case C bind zin C4,... ,Cy,
where n > 0 and ¢,m > 1

M,N € Termyc. = {C | O does not occur in C}

V € Value,cm w= c | AeM | x(Vi,..., Vo) | i;; V
where n > 0and ¢ >1

Redex/Contractum Relation

(Al’.M) Qv >\ CIL M[I'ZZV]

m X(Va, oo, V) ~s oV if1<i<n
case (in; V) bind z in My,... M, ~,c.  M;[z:=V] if1<i<n
rec z.M ~ e Mz:=(rec z.M)]

One-Step Reduction Relation

C[M] —s,ow. C[M'] iff M~ o M’ One-Step Reduction

Figure 3: The A“™"-calculus.

3.2.1 The CRS ¥

Figure 4 defines the CRS X(;.. The members of ValPattcry, are the value patterns. These will be shown to
be in good correspondence with the set Valueycm . The value patterns are used as templates in the definition
of the infinite set of reduction rules Red(Zcyy).

REMARK 3.22. The set Red(Z¢y,) is defined as LeastUpToRenaming(S) for a larger set of rules S to e-
liminate extra rules that differ only in the names of metavariables.  This is necessary in order for ¥,
to qualify as orthogonal and it also simplifies various proofs. For example, without this filtering, the
rules Q(A([z]Z1(z)),c) — Zi(c) and Q(A([z]Z2(x)),c) — Za(c) where Z; # Zs would both belong to
Red(Zcy). O

REMARK 3.23. Like ¥, the CRS X, represents a call-by-value system. However, the two systems effect the
call-by-value disciplines of A, and A" differently. In ¥, the call-by-value discipline is enforced by wrapping
variables and abstractions with val( - ). This technique is not used here to derive a CRS corresponding to
AT because the status of a CRS term would be able to change from non-value to value by a deeply nested
reduction step with the result that the val markings would become inaccurate. For example, although
u = x1(Q(A([z]z), ¢)) is not a value, u —5;,, v = X1(c) and v is a value.

It is possible to construct a CRS that effects call-by-value reduction by using val and notval symbols
to track the value status of subterms and by using special rules to propagate changes in these symbols (see,
e.g., WDMTO0X]). However, the constructed CRS will not be isomorphic to A°™| because it will have extra
steps to propagate these symbols. To avoid this issue, the CRS ¥y, has been designed with an infinite set
of reduction rules generated according to the definition of the value patterns. This technique does give the
desired isomorphism between A and ¥,.. O

As in section 3.1, we will begin by showing that Y.y, is a well-defined and orthogonal CRS and that it
is in good correspondence with A°™". Note that Y. is a constructor system.

Lemma 3.24. Every value pattern s € ValPattcry, is linear. O
Proof. By induction on the size of s, relying on the side condition DMV ({s1,...,s,}) in the tuple case of
the definition of ValPattcr,. O

Lemma 3.25.

1. Ten is a bijection between Contextycm and Tom (Contextyorm).
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Reduction Rules of Y,

Constsy,;, = {c(o) | ¢ € Constycm }
Constsq,y,
ValPattCIL = U {A([I']Z(l')) | Z € MV&I‘}

U{ Xn(s1,---,8n) | {51,--.,8n} C ValPattcr,, DMV ({s1,...,sn})}
@] {ini (S) | s € ValPattci, 1 < l}

{Q(A([z]Z(x)),s) = Z(s) | s € ValPattciL, Z ¢ MV (s) }

U {7Ti(><n(81, . ,Sn)) — S;
. | {s1,..-,sn} C ValPattci,, DMV({s1,...,8n}), 1 <i<n}
PreRedsen. = | ) ¢ casen 1 (ini(s), [£] 21 (2), ... , []Zn(x)) = Z:(s)

| s € ValPattci,, DMV({s, Z1(z),... ,Z,(2)}),1 <i<n}
U {u([x]Z(x)) = Z(u([x]Z(x)))}
Red(Xcm) = LeastUpToRenaming(PreReds ;)

Translation Function from Context,cm.

Tow (O) =0 Tem.(c) =c

Tom. () =z Tem (rec .C) = p([z]Tem(C))

Temw )\ﬁ-c) = )\([x]%IL(C)) %IL(CI Q@ 02) = @(%IL(Cl)y %IL(CZ))
( = ini(7ew (C))

(

(
%IL(Wi O) = 7Ti(7—CIL(O)) Tom (in; O)
Tom (X (Cry ..., Cn)) = X (Tew(Ch), - .., Tew (Cr))
Tem(case C bind z in Ch, ... ,Cy) = casent1 (Ten (C), [2]Tom (Ch), - . ., [] Tem (Cr))

Translation of Redex Occurrences
Tor ((C,0)) = (Clv(s)].p,s — 1)
where Tow(C) = C’p, s — t € Red(Zcw), v is a valuation for s, and Ten. (8) = v(s).

Terms of Yy,
Ter (ECIL) = 7~CIL (TermACIL)

Figure 4: The CRS X,
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2. Ton § Termycm is a bijection between Termycw. and Ter(Xey,). O
Proof.

1. See proof of lemma 3.1.

2. Same. O
Lemma 3.26. If C has one hole and M € Termycw then T, (C)[Tow(M)] = Tow (CIM]). O
Proof. By induction on C. O

Lemmas 3.27 and 3.28, (respectively) relate values and redexes in A" to the corresponding entities in
ECIL‘

Lemma 3.27. If V € Valueycw., then there exists an s € ValPattcy, and valuation v for s such that
Tew (V) = v(s) and DomDef(v) = MV (s). O

Proof. The claim is proven by induction on the size of V' and then by cases on the shape of V.
1. If V = ¢, then take s = ¢(® and v = @.
2. If V = (Az.M), then take s = MN([2]Z(2)) and v = {Z = Tow(M)[z := Z1]}.

3. Suppose V = x(Vi,...,V,). Then, by the induction hypothesis, for 1 < ¢ < n there exist s; €
ValPattcr, and v; such that v; is a valuation for s; and 7o (Vi) = vi(s;).  Let R" and 3" be
metavariable renamings and metaterms such that DMV ({s},...,s},}) and for 1 < i < n it holds that
st = R;(s;). Observe that s; € ValPattcy, for 1 <i <n. Let v =v; 0 Ri_1 for 1 <i <n. Then take

5= Xp(s],...,8,) and v =y <;<, Vi
4. Suppose V = in; V'. Then by the induction hypothesis there exist s’ € ValPattcr, and v such that
Ter (V') = v(s'). Take s = in;(s'). O

Lemma 3.28. If § is a \°"-redex, then there exists a unique rule s' — t' € Red(Z¢) and a valuation v'
for s such that Tew,(6) = v/ (s") and DomDef(v') = MV (s'). O

Proof. We consider each A“"-redex/contractum rule in figure 3. For each rule, we will compute an r = s —

t € PreReds,,, and a valuation v for s such that T¢.,(8) = v(s) and DomDef(v) = MV(s). From each of
these, the desired result is the rule ' = LeastUpToRenaming(r) and the valuation v’ = v o R where R is a
metavariable renaming such that R(r') =r.

1. Suppose 6 = (A\x.M) @ V. Then by lemma 3.27, there exist s’ € ValPattcn, and valuation v for s’
such that Tor, (V) = v/(s') and DomDef(v') = MV(s’). Let Z € MVar such that Z ¢ MV(s’). Then
take s = t = Q(A([z]Z(z)),s") = Z(s'") and v = V'[Z — Tew.(M)[z := Z4]].

2. Suppose 6 = 7m; x(V1,...,V,). Then because x(V1,...,V,) € Valueycw, by lemma 3.27, there exists a
valuation v’ and s’ € ValPattcyr, such that v'(s") = Tow(Xn(V1,...,V4)) and DomDef (') = MV(s').
It must be the case that s’ = x,(s},...,s,) for some s|, ..., sl,. Then take v = v/ and s = ¢ =
mi(Xn(sh, ... ,80)) = sk

’ n

3. Suppose § = case (in; V) bind z in My, ..., M,. Then by lemma 3.27, there exist s’ € ValPattcrr,

and valuation v for s’ such that 7cn, (V) = v/(s') and DomDef(v') = MV(s'). Choose Zi, ..., Z,
such that DMV({Z1(z),... ,Zn(x),s'}). Thenlet v =v' U{Z; = Ton(M;)[z:=2Z;] |1 <i<n} and
let s =t = case,+1(in;(s'), [z]Z1 (), ..., [z]Z.(x)) = Zi(s").

4. If § = rec z.M, then let s — ¢t = p([2]Z(2)) = Z(u([z]Z(z))) and v = {Z — Ten (M)[z = Z1]}. O

Entities in Yoy, will now be related back to entities in A°™. Lemmas 3.31 through 3.33 address the
well-definedness of 7;. Lemmas 3.34 and 3.35 (respectively) relate values and redexes in ¢y, to the

corresponding entities in A°™*. In this sense, they are converses of lemmas 3.27 and 3.28.
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Definition 3.29 (Nice). When reasoning about XY and Sep, a preterm w € PTer is nice iff w €
Tom (Contextycm). As derived notions, a term w € Ter is nice iff u € Ter(Xc.) and a context C' € Ctxt is
nice iff C' € Tou (Contextyom) N Ctxt. A valuation v is nice iff for every Z(™) € DomDef(v), there exists

some {z1,... ,z,} C Var such that v(Z(z1,...,zy)) is nice. O
Lemma 3.30. Let C and C' be nice one-hole contexts. Then C[C'] is nice. O
Proof. Immediate from the definition of T¢yy.. O
Lemma 3.31.

1. If any one of A([z]w), m;i(w), in;(w), or u([z]w) is nice, then w is nice.

2. If Q(wy,ws) is nice, then wy and wo are nice.

3. If either X (w1, ... ,wy) or case,(wr, [x|wa, ... ,[z]wy,) is nice, then w; is nice for 1 <i < n. O
Proof. Immediate from inspection of the definition of Ty O
Lemma 3.32. If term u and one-hole context C' are nice, then T3 (C)[T5k(w)] = T5E(Clu)). O
Proof. By induction on C using lemma 3.31. O
Lemma 3.33. For one-hole context C € Ctxt and n > 0, if C[F(vy,...,v,)] is nice, then both C and
F(vy,...,v,) are nice. O
Proof. Let w = F(vy,...,v,). Assume that C is a one-hole context and C[u] is nice. Proceed by induction

on the size of C' and then by cases on the shape of C.
Suppose C = 0. Then C = T¢,.(0), so C is nice. Also, C[u] = u, so u is nice because Clu] is nice.
Suppose C # O. It can be checked that C' = C[C] for some one-hole contexts C',C' € Ctxt where C is of

one of the following shapes, for some numbers m,m',i > 0 and metaterms s, s1, ..., $m, §1, ---, S/

m'*

/\([1‘]D), p,([:L’]D), @(D)sl)a @(81, D): Wi(D)> ini(D);
Xmtm'+1 (81, -« Sm, 0,81, ... ,80),  casemimya(s, [Z]s1,. .., [x]sm, [2]0, [z]s],. .., [z]s],),
casen1(0, [x]s1,. .., [T]sm)

In all cases, it can be verified that C is nice, using lemma 3.31 to show that the subterms s, 5 and § are
nice. Also using lemma 3.31, it holds that Cu] is nice. By induction hypothesis, both C' and u are nice.
Because both C and C' are nice, C' = C[C] is nice by lemma 3.30. O

Lemma 3.34. Let s € ValPattcr, and let v be a valuation for s such that v(s) is nice. Then:

1. T (v(s)) € Valueyomw, and

2. v | MV(s) is nice. O
Proof.

1. That 73! (v(s)) € Valueycn can be shown by induction on the size of s using the fact that, for every
value pattern s, the leftmost symbol of v(s) is the same as the leftmost symbol of s and by inspecting

the definition of T¢y..

2. By induction on the size of s. If s = c or s = A([z]Z(x)) for some Z € MVar, then the result is

immediate. If s = in;(s'), then the result follows by induction hypothesis. Suppose s = X, (s1,.-. ,85)
with DMV ({s1,...,s,}). Let v; = v | MV(s;) for 1 < i < n. By induction hypothesis, v; is nice for
1 <i < n. This is sufficient, because v | MV(s) = U <;<,, ¥i- O

Lemma 3.35. Let s — t € Red(Zcw.) and let v be a valuation for s such that v(s) is nice. Then:
1. Tk (v(s)) is a X°™-redex, and

2. v | MV(s) is nice. O
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Proof. Suppose s — t € Red(Zcy), v is a valuation for s, and v(s) is nice. By a case analysis on s. One
case is shown and the other cases are handled similarly.

Suppose s = Q(A([z]Z(z)),s") where s’ € ValPattcr, and Z ¢ MV(s'). It is easy to calculate that
v(s) = Q\([z]v(Z(x))),v(s")) where z ¢ FV(v) is obtained by a-conversion. By lemma 3.31, it holds that
v(s"), AM[z]v(Z(z))), and v(Z(zx)) are nice. Let M = T;l(v(Z(z))). By lemma 3.34 (1), there exists a
V € Valueycn such that V = T3} (v(s')). Let N = (Az.M) Q V. It is easy to calculate that 7, (N) = v(s).
By the definition of ~,cm., it is clear that N is a A*™-redex, proving part 1 of the claim. By lemma 3.34 (2),
v | MV(s') is nice. Because v(Z(x)) is also nice, v | MV(s) is nice, proving part 2 of the claim.

O
Lemma 3.36. Let s — t € Red(Zcn) and let v | MV (s) be nice. Then v(t) is nice. O
Proof. By a case analysis of the rules in Red(Xcq.). O

Lemma 3.37 (Closure under Reduction).

Ter (Xeq) = Ter (Bam) U {U | u € Ter(Xcmw), ¥ —Red(Som) ¥ } . O

Proof. 1t suffices to show that if w is nice and wu A);{ed(gcm) v, then v is nice. Suppose w is nice and
u A};{ed(gcm) v. It must hold that u = Clv(s)] and v = Clv(t)] where s — t € Red(Ecr.), C € Ctxt, and v
is a valuation for s. By lemma 3.33, C' and v(s) are nice. Then v | MV(s) is nice by lemma 3.35 (2). Then
v(t) is nice by lemma 3.36. Finally, v is nice by lemma 3.32,

O O

Corollary 3.38. X, is a CRS.

Lemma 3.39. Y.y, is a constructor CRS with FCon(Xcy) = {\, Xy,in;} U Consty,, and FDes(Xcp) =
{Q, m;, case,, u}. O
O

Proof. Obvious.
Lemma 3.40 (Orthogonality of X.;;). ¢y is an orthogonal CRS. O

Proof. Left-linearity of ¥, follows from lemma 3.24 and by inspection of the definition of Red(Xcy,). That
Ycu is unambiguous follows from the fact that Red(¥¢n) = LeastUpToRenaming(PreReds,,, ) and by
inspection of the definition of Red(X¢r.)- O

Theorem 3.41 (Confluence of ¥). Ecy is confluent. O

Proof. Theorem 2.5 and lemma 3.40. O

3.2.2 Correspondence between A\ and Y,

Lemma 3.42. Ty, is a surjection from ACIL _redex occurrences to Yeq-redex occurrences. O

Proof. Let A = (u.p,s — t) be a Yy -redex occurrence, where s — t € Red(X¢y,). By definition, this
requires that  is nice and that u = C[v(s)] for some C? and some valuation v for s. Because all redex
terms are of the form F'(uy,... ,u,) where n > 0, by lemma 3.33 it holds that C and v(s) are nice. Then by
lemma 3.35 (1), there exists a A°™-redex § = 7! (v(s)). By lemma 3.25 (1), there exists a C € Contextycr.
such that C' = 752(CP). Then Tiuw (C)[Tow (8)] = Tow (C[6]) by lemma 3.26. Then T, ((C,0)) = A. O

Lemma 3.43 (Substitution). T, (M[z := N|) = Tow (M)[z := Tew (N)]. O

Proof. Let u = Tow(M[z := N]) and let v = To, (M)[z := Tew (N)]. We must prove that u = v. The
proof proceeds by induction on M and then by cases on the shape of M. If M = ¢, then u = c =wv. If
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M=y#z,thenu=y=v. If M =z, then u = Ter,(N) = v. Suppose M = (Ay.M"). By a-conversion, let
y ¢ {z} UFV(N). Thus, y ¢ {z} UFV(Tcw(N)). Then

= Ton((Ay-M")[z:=N])
= Tom. (>\y (M'[e:=N1))
= N[y Tow (M [z:= ]))
(by the induction hypothesis) = A([y]Tew (M")[z:=Tcw (N)])
= )\([y]TCIL(M ) [z: Tcm( )]
= 7;:IL( M")[z:=Tcw(N)]
The other cases are handled similarly. O

Lemma 3.44 (Redex Simulation). The statement § ~»,cu. P holds iff there exists a unique s — t €
Red(Zcr) and valuation v for s such that Tew (8) = v(s) and Tew (P) = v(t). O

Proof.

= Suppose § ~,c. P. By lemma 3.28, there exists a unique s — ¢t € Red(Xcy.) and valuation v for s such
that Tom,(0) = v(s). We must establish that Tcr, (P) = v(t). In each of the cases below, the valuation
v is as constructed in the proof of lemma, 3.28.

1. If 6 = (Az.M') @V, then P = M'[x:=V], s = t = Q(A([z] Z(x)),s') = Z(s') and
v= (v L MV(s')) U {Z = Tow (M) := Zl]}

where s’ € ValPattcy, and v’ is a valuation for s’ such that v'(s") = Tew (V). Then

v(t) = v(Z(s)
= V' (w(Z)) where " ={Z; = v(s')}
= 7—CIL(MI)[m = 7'CIL(‘/)]
= Tew(M'[z:=V]) by lemma 3.43.
2. If6=m x(Vi,...,Vn), then P =V;, s > t = mi(Xn(s1,...,8,)) = 8i, and v =, <, vj where

for 1 < j < mn, s; € ValPattc,, and v; is a valuation for s; such that vj(s;) = Tow (V). Then
v(t) = v(si) = Ton (Vi)
3. If 6 = case (in; V) bind z in M;,... , M, then P = M;[z:=V],

s = t = case,q (ini(s'), [2]Z1(2),. .., [2]Zn(x)) = Z; (s")

and v = v/ U{Z; = Tow(M;)[z := Z;] | 1 < j <n} where s’ € ValPattcy, and v/ is a valuation
for s’ such that v/(s') = 7E1L( ). Then

v(t) = v(Z;i(s")

V' (v(Z;))  where v = {Z; = v(s')}
Tew(Mi)[z := Tew (V)]

Tow (Mi[z :=V]) by lemma 3.43.

4. If § = rec z.M', then P = M'[z:=(rec . M')], s = t = p([z]Z(x)) = Z(u([z]Z(zx))), and
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v={Z— Tow(M")[z := Z1]}. Then

W) = W22 @)
= V(2) where o = {2 o () 2(2)))
= Ten (M) 1= w212 () A
= Ten(M)[z = pu([z'1v"(v(Z)))] where v" = {Z; — 2’}
= Teu (M)l 1= (@' Tors (MO 1= ')
= Ten(M")[z := T (rec z.M'))
= Tew(M'[z := (rec £.M')]) by lemma 3.43.

< Suppose Ter(6) = v(s), Ten(P) = v(t) where s — t € Red(Zcr) and v is a valuation for s. By
lemma 3.42, there exists A“™-redex § = 7;;%(v(s)). The form of § is determined by s — ¢ as follows.

L If s = t = Q\([z]Z(z)),s') — Z(s'), then there exist u,v € Ter(Xcn) such that v(Z) =
u[z := Z1] and v(s") = v. Then

§ = Ton(w(@\[z]Z(z)),s")))
= Ta(@QW([z'|ulz == 2]),v))
= (\z.PHaQVv
where V = 73! (v) and P' = T3} (u). Then
Ta(v®) = Touw(Z(s'))) X
= Ton(V'(v(2))) where v = {Z; = v(s')}
= T (ufz :=v])
= Ton(Tew(P')[z := Tew(V)]) by lemma 3.25
= T (Tew(P'lz :=V])) by lemma, 3.43
= Plz:=V] by lemma 3.25.
2. If s = t = m(Xn(s1,...,52)) = s; then, for 1 < j < n, there exist u; € Ter(Xq.) such that

v(sj) = uj and V; € Valueyerw such that 75 (v(mi(Xn(s1,-.-,8n)))) = m x(Vi,...,Vy). Then
T (v(8) = T (v(s:)) = Vi

3. The case s — t = case,y1(in;(s), [z]Z1(x), ... ,[x]Zn(z)) = Z;(s) is similar to 1.
4. The case s = t = p([z]Z(z)) = Z(u([z]Z(z))) is similar to 1. O
Lemma 3.45 (Reduction Simulation). M 2 cr N iff Touw (M) MZCIL Tom (). O

Proof. The same as the proof of lemma 3.20 using lemmas 3.44, 3.26, 3.36 and 3.32 (resp.) in place of
lemmas 3.19, 3.3, 3.10 and 3.7 (1).

o
Theorem 3.46 (Confluence for \“™). \“™ is confluent. O
Proof. Theorem 3.41 and lemmas 3.45 and 3.42. O

4 Standardization and Evaluation in CRSs

This section summarizes essential definitions and theorems developed in [WMO00]. Readers interested in
proofs and further discussion of the definitions in this section are referred to [WMO00]. Readers already
familiar with [WMO0O] can safely skip ahead to section 5.
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4.1 Standardization in CRSs

Let ¥ be a CRS and let u € Ter(). A S-redex (occurrence) ordering of u is a sequence p = [A"] where A, is
a X-redex occurrence in u for 1 < ¢ < n. Given such a sequence p = [5”], the redex occurrence A; is p-before
A;iff 1 <i<j<n. A XY-redex ordering p is complete iff it mentions all of the ¥-redex occurrences in w.
A Y-redex (occurrence) ordering function is a function R such that R(u) is a complete E-redex ordering for
all u € Ter(X). Given a Y-redex ordering function R and Y-redex occurrences A and A’ in u € Ter(X), the
redex occurrence A is R-before A’ iff A is p-before A’ where p = R(u).

A notion of standard reduction can be defined relative to such redex ordering functions. Let o =
(uo, Ao, u1,Aq,...) be a E-reduction sequence and let R be a Y-redex ordering function. A ¥-redex occur-
rence A in u; for i > 0 is R-freezing in o iff A is R-before A; (the to-be-contracted redex occurrence). A
Y-redex occurrence A in u; for i > 0 is R-frozen in o iff A is a residual® of a R-freezing redex occurrence in
an earlier term in the sequence. The reduction sequence o is R-standard iff no R-frozen redex occurrence is
contracted in any reduction step in o.

For the purpose of proving standardization, it is useful to identify properties of redex ordering functions
that are sufficient to guarantee the existence of standard reduction sequences. The two conditions described
here are sufficient when taken together. Given any one-step 3-reduction sequence o = u A, v, the required
conditions are (1) that every R-freezing Y-redex occurrence in u has exactly one residual in v (which is
necessarily R-frozen) and (2) that all R-frozen ¥-redex occurrences in v are R-before all non-R-frozen
Y-redex occurrences in v. A Y-redex ordering function satisfying these conditions is good.

One of the main results in [WMO00] is the following.

Theorem 4.1 (Standardization). Let ¥ be an orthogonal CRS and R a good ¥ -redex ordering function.
For any finite ¥-reduction sequence o, there is an R-standard X-reduction sequence o’ such that o ~¢'. [

Proof. See [WMO0O]. O

4.2 Automatically Obtaining Good Redex Ordering Functions

In order to make use of theorem 4.1, it is necessary to find good redex ordering functions. Let ¥ be a CRS
with u € Ter(X). A subterm (occurrence) ordering of u is a sequence v = [p1, ... , pp] of members of Skel(u).
A subterm ordering v is complete iff v = Skel(u). A subterm ordering v = [p"] of u is top-down iff for
1 <i<n,if p; = q-j for some path ¢ and number j, then ¢ € {p1,...,pi—1}. A subterm (occurrence)
ordering function for ¥ is a function I' such that for all u € Ter(X), I'(u) is a complete subterm ordering for
u. A subterm ordering function I" is top-down iff for all u € DomDef(I") it holds that I'(u) is a top-down
subterm ordering of u. Informally, I" is top-down iff it visits a node only after visiting the node’s parent.

Given a CRS ¥ with u € Ter(X), a subterm ordering v for u determines a redex ordering for u, no-
tation |v|s (written |v| when ¥ is obvious), such that if there are Y-redex occurrences A = (u.p,r) and
A" = (up',r'), then A <, A" iff p <, p’. It is clear that if v is complete then |vy] is too. If T is
a subterm ordering function, then |['|y; (written |'] when ¥ is obvious) is the redex ordering function
{u~ |I'(u)] | w € Ter(X) }. A subterm ordering function I' is good for ¥ iff |I'| is a good X-redex ordering
function.

Figure 5 defines a subterm ordering function generator G. The generator G can be applied to any CRS
¥ and choice function ©. The choice function ©® may be any fixed total function such that ({5}, ¢) €
{P} U {wrong}. The second argument to O is extra information that it may use in deciding which member
of its first argument to return. If no choice function is specified as in G(X), then this stands for G(2, Ojex)
where O is the choice function such that Ojex({P}, ) = minjex{p}. In using the various functions defined
in figure 5, the subscripts of ¥ and © will sometimes be omitted when the CRS and choice function being
used are clear from the surrounding text.

Intuitively, the meanings of the functions NextOrder, NextPos, Unex, Disc, Inv, Poss, PossUnex, Mand,
and Opt are as follows. The function NextOrder either extends a subterm ordering by exploring one addi-
tional position in the term or propagates the failure symbol “wrong”. Given a term u and a subterm ordering
on some subset of Skel(u), The function NextPos determines the next position to explore in the term, if

6See [WMOO] for a definition of residual.

22



G(%,0)(s) = NextOrderk; ¢ ,([]) where k = |Skel(s)| and

NextOrders.o. (8) [, pit1] if § = ['] # wrong and NextPoss e ([5"], s) = pi+1 # wrong,

wrong otherwise,
NextPoss.o(y,5) = O©(Optx(7,5), Tree(s) | v) if Opt; (7, s) # wrong,
wrong otherwise,
Unex(y,s) = min<(Skel(s)\ )
Discs(y,s) = {(s.p,r) | r € Red(X),Vq € Int(r).
p-q €7 and Tree(s)(p - q) = Tree(LHS(r))(q) }
Invn(y,s) = {pl(s.q,r) € Discn(v,5),¢ €Int(r),p<q-q'}
Possx(v,s) = {(s.p,s =1t) | pey\Invs(y,s),s =t € Red(X),
Vg € Int(s'). p- q € v = Tree(s)(p - q) = Tree(s')(q) }
PossUnex(s.p,r) = {p-q|q €Int(r),p q € Unex(y,s)}
Mands(vy,s) = ﬂ PossUnex(s.p, )

(s.p,m)EPossx (7,s)
Unex(v,s)  if Posss(y,s) = &,

Mands (v, s) if Posss(v,s) # @ and Mandx (v, s) # &,
wrong if Posss(7, s) # @ and Mands(y,s) = &

OptE (77 S)

Figure 5: A subterm ordering function generator.

possible. The function Unex gives the “unexplored frontier positions”, Disc the “discovered redex position-
s”,7 Inv the “invalid positions for undiscovered redexes”, Poss the “possible redex occurrences”, PossUnex
the “unexplored positions on the frontier of a possible redex occurrence”, Mand the “must-explore-next
positions”, and Opt the “options for next position to explore”.

Theorem 4.2. If ¥ is orthogonal and T' = G(X) is a subterm ordering function for ¥ (i.e., wrong ¢
[(Ter(X))), then T is good for X. O

Proof. See [WMO0O]. O

In light of theorems 4.1 and 4.2, the standardization property for an orthogonal CRS ¥ can be proved
directly by showing that G(X) is a subterm ordering function. However, the applications presented in this
paper give rise to a restricted form of CRS that admits further factorization of the proof burden.

4.3 Evaluation in Constructor CRSs

This section describes how to use the generic subterm ordering function generator G presented in the pre-
ceding section for the class of constructor CRSs. Constructor CRSs often arise in programming language
semantics and both of the examples in this paper, ¥, and ¥y, are constructor CRSs. The subterm ordering
function generator will be provided a choice function that is biased to fully explore the internal positions of
values before considering other nodes. Such a choice function is called value respecting. This section also
describes how to derive sets of values and evaluation contexts directly from the reduction rules of a CRS.
These are then used to further define an evaluation relation for the CRS.

Context/Term Decomposition The context/term decomposition of a preterm w at a set of positions P
such that P N Skel(w) # @, written Decomp(w, P), is defined as follows:

Clvl=w
(C™ (™)) € Decomp (w, P) <= < and Skel(C) = {q € Skel(w) | lpe P.p < ¢}
and Tree(C)(P N Skel(C)) = {O}

The set Decomp(w, P) will contain an infinite number of context/subterm decompositions iff at least one
position p € Skel(w) N P is below a binder in w.

7If we allowed non-fully-extended reduction rules, we would have to call the result of Disc the “discovered redex-like patterns”.
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Value Patterns and Values A pattern s subsumes a pattern ¢, written s C ¢, iff Tree(s)(p) = Tree(t)(p)
for all p € Int(s). Given constructor CRS X, define its sets of value patterns and values as follows:

ValPatt(X) = min{s; | s + ¢t € Red(X),s = F(5"),1<i<n}
Val(X) ={v(s) | s € ValPatt(X), v is a valuation for s }

Value-Respecting Choice Function Given a constructor CRS X, define the following;:

PossVals (f) = {s € ValPatt(X) | Jp' € Int(s).f(p’) is undefined,
Vp € Int(s).f(p) defined = f(p) = Tree(s)(p)},
MandVals (P, f) = PN (Nsepossvals (r) 16(5));
minye, (P) if PossVals(f) = &,
ValChoose(Z)(P, f) = < minjex(MandVals (P, f)) if PossVals(f) # @ and MandVals (P, f) # &,
wrong if PossValy (f) # @ and MandValy (P, f) = 2.
ValOrder(X) = G(Z, ValChoose(X))

Given that f represents a partial top-down exploration of some term w, the meaning of PossValy(f)
is that a value pattern s € PossValy(f) iff u might be a value by virtue of s matching u, but u has not
been explored enough to determine this for certain. The intuitive meaning of MandValy, (P, f) is the set of
positions that must be explored. The function ValChoose(X) is a “value respecting” choice function, i.e., a
choice function that is biased to fully explore the internal positions of values before considering other nodes.
ValOrder(X) is the subterm ordering function generator specialized with the value respecting choice function.

Let ¥ be a constructor CRS, let u € Ter(X), let v be a top-down subterm ordering of u, and let f =
Tree(u) | . Then the statement MaybeVal(f, ¥) holds iff PossVals (f) # @. The statement IsVal(f, ¥) holds
if and only if there exists an s € ValPatt(X), such that s is linear and fully extended, Int(s) C DomDef(f),
and Vp € Int(s) it holds that Tree(s)(p) = f(p). Let NotVal(f,X) hold iff neither MaybeVal(f,X) nor
IsVal(f,X) hold.

Manageability A CRS X is manageable iff ¥ is orthogonal and ValOrder(X) is a subterm ordering function
(i.e., wrong ¢ Ran(ValOrder(X))).

Evaluation Contexts Given a manageable CRS X, define:

CtxtsPos(s,p, P) = { C" | (C™, x) € Decomp(s, {p} U P), @™ € Ter, (C',x") € Decomp(Cl[i], {p}) }
ContextsMTx(s) = {C'| ValOrder(X)(s) = [p"],2 < i < |Int(s)],
C € CtxtsPos(s,p;, min< ({pit1,... ,pn} U{p | Tree(s)(p) € MVar }))}

gred(z) = Us%teRed(Z) ContextsM Ty (S)
Eval(X) = Usevalpatt(g) ContextsMTy (s) U {O}
EvalCont(X) ={C[C[--[Ch]---]] | C € &vat(2),C" € Erea(D) }

A context C' € CtxtsPos(s,p, P) iff C is a one-hole context formed from s by chopping s at the positions
{p} UP and filling in the holes at positions P by arbitrary terms (not metaterms), leaving a single hole at p.
A context C' € ContextsMTy (s) iff C' is a one-hole context formed from s by partially exploring s according
to ValOrder(X), putting O at the next position to explore, and replacing all other unexplored positions by
arbitrary terms.

Evaluation Given redex occurrence A = (u.p, ), the statement u 25, v holds iff u 255, v where u = C?[u']
and C' € EvalCont(X). In this case, we also write u sy v and u —x v. Let —»y, be the transitive, reflexive
closure of —»x. Let Y-eval-nf(u) hold iff there exists no v such that u — 5 v. The operational semantics
for ¥ is a function Evaly, such that for u € Ter(X),

value if Jv. u —»x v,v € Val(2),
Evalg (u) = < diverges if #v. u —»x v, X-eval-nf(v),
stuck otherwise.
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Two terms u and v are observationally equivalent, written u ~y v, iff Evaly(C[u]) = Evaly(C[v]) for every
context C' such that {C[u], C[v]} C Ter(X).

Theorem 4.3 (Plotkin/Wadsworth /Felleisen Standardization). If ¥ is manageable, u —»y, v, and
v € Val(X), then there exists v' € Val(X) such that u —»yx v —»x v. O

Proof. See [WMO0O0].
The following properties of constructor systems and G will be used in section 5 when proving that the
CRSs X, and Xy, are manageable.

Lemma 4.4. Let ¥ be an orthogonal CRS, let k = |Skel(s)|, and let v = NextOrderiE7@7s([]) = [p,p'], where
1 <i < k. Then for all (s.p,r) € Posss (v, s) it holds that p < p'. O

Lemma 4.5. Let ¥ be an orthogonal constructor CRS, let k = |Skel(s)|, and let v = NextOrder§7@7s([]) =
[7,p'], where 1 < i < k. Then there exists a p such that p < p' and for all (s.p",r) € Posss(7,s) it holds
that p" = p. O

Corollary 4.6. Let ¥ be an orthogonal constructor CRS such that Red(X) = {r} is a singleton, let k =
|Skel(s)| and let v = NextOrdery g (([]) = [P,p'], where 1 < i < k. Then Posss(y,s) is either @ or a
singleton {(s.p,r)} where p < p'. O

5 Standardization for )\, and \‘L

This section applies the results from [WMO00] summarized in section 4 to the two CRS’s X, and ¥, and
then uses the correspondences shown in section 3 to transfer the results to A, and A\¢™.

For each (A, %) € {(Ay, %y), (A, Bcn)}, a set of evaluation contexts and a notion of evaluation is math-
ematically derived for ¥. The primary proof burden is to show that ValOrder(X) is a subterm ordering func-
tion, i.e., it does not yield “wrong” for any term v € Ter(X). As a corollary, a Plotkin/Wadsworth/Felleisen-
style standardization theorem is obtained for ¥.. This notion of standardization has the implication that if
one defines the operational semantics for ¥ in the standard style, then the equational theory of ¥ is sound
with respect to observational equivalence for X, i.e., =y C ~s. To transfer these results from ¥ to A, the
remaining burden here is to formulate a definition of evaluation contexts for A and show that it is equivalent
to EvalCont(X).

51 (A,

This section proves standardization for ¥, and then transfers the result to the Ay-calculus.

5.1.1 Standardization for X,

Lemma 5.1. ValOrder(X,) is a subterm ordering function. O

Proof. Tt is equivalent to show that wrong ¢ Ran(ValOrder(Xy)). Let u € Ter, k = |Skel(u)|, and O, =
ValChoose(Zy).  Let d; = NextOrdergwev,u([]) for 0 < i < k. Because ValOrder(Xy)(u) = Jj, it suffices
to show that 0 # wrong. The stronger statement that J; # wrong for 0 < ¢ < k will now be proven by
induction on i. For 4 =0, it is trivial to check that §; = [] # wrong.

In this proof, the following general facts are used. For arbitrary X, O, v, and subterm ordering ~ for v,
all of the following statements hold:

1. NextOrders g () = wrong iff Opty(y,v) = wrong or ©(Optyx(7y,v), Tree(v) | v) = wrong.
2. Optyx(y,v) = wrong iff Possx(y,v) # @ and Mands(y,v) = 2.
3. Possx(7,v) # @ and Mandx(y,v) = @ only if [Posss (v, v)| > 2.

4. For P = Optx(y,v) and f = Tree(v) |} 7, it holds that ValChoose(X)(P, f) = wrong iff
PossValy(f) # @ and MandValy (P, f) = 2.
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5. If NextOrderg7@7v([]) = v # wrong for 0 < 4, then 7 is top-down.

Suppose now that ¢ > 1. By induction hypothesis, §;—1 = 7 # wrong for some subterm ordering -y
for u. By fact 1 above, to prove that J; # wrong, it suffices to show that Opts_(v,u) # wrong and
©y(Opty (7,u), Tree(u) | v) # wrong.

That Opty,_(v,u) # wrong is proven first. Because X, is a one-rule orthogonal constructor CRS, by
corollary 4.6 and fact 3 above, if Posss, (v,u) # &, then Mands,, (y,u) # @. Then fact 2 above gives the
desired result.

Next it is proven that ©,(Opty_(v,u), Tree(u) | v) # wrong. By fact 4 above, it suffices to show
that PossValg, (Tree(u) | v) # @ implies MandValy, (Opty_(7v,u), Tree(u) | v) # @. This will now be
established. Suppose that PossValg, (Tree(u) | v) # @. First, observe that ValPatt(X,) = {val(Z:)}.
Because @ # PossValy, (Tree(u) | v) C ValPatt(X,), it is clear that PossValg, (Tree(u) | v) = {val(Z2)}.
Next, observe that Int(val(Z,)) = {e} and, by the conditions on the definition of PossVal, (Tree(u) | v)(e
must be undefined. By fact 5 above, v = [] = dp. Simple calculation reveals that Opty_([],u) = {€}
MandVals, (Opty_([],u), Tree(u) { []) # @, which is the desired result.

)
0
Lemma 5.2. ¥, is manageable. O
Proof. Lemmas 3.14 and 5.1. O

O

Corollary 5.3. EvalCont(X,) is well-defined.

Lemma 5.4 (Standardization for X,). If u —»y, v, and v € Val(X,), then there exists v' € Val(X,)
such that u —»s, v\ —»x, . O
Proof. By theorem 4.3 and lemma 5.2. O

5.1.2 Standardization for A,

Using lemmas 5.4, 3.1, and 3.20, a standardization theorem for A, will now be obtained by observing that
Valuey, corresponds with the nice members of Val(Xy) and by defining a relation ——)_ on Term,, that
corresponds with the relation —y,, on Ter(X,).

REMARK 5.5. What is actually required is a one-sided correspondence, that is, that u —yx_ v implies
T, (u) — 5, T, (v), but the two-sided correspondence will be proven. O

The following grammar will be shown to characterize exactly the nice members of EvalCont(X,) (i.e., the
set EvalCont(X,) N DomDef(7,7')). In this grammar, restrict v to range over the nice members of Ter(Z,)
(i.e., the set DomDef(7,7')):

e € NiceEvalCtxtsy, == 0O | Q(e,u) | @Q(val(A([z]u)),e)
Lemma 5.6. If C' € NiceEvalCtxtsy,, then C is nice. (]
Proof. By induction on C. O

Lemma 5.7. Let C = Cy[C4][ -+ [C ]---]] where n > 0, Cy € Evai(Ey), and Ci,...,Cp € &rea(Ey). If
C € DomDef(7"), then Cy,Ch,...,Cy € DomDef (7~ ) (Informally, if C' is nice, then Co, C1, ..., Cp
are nice.) Furthermore, Cy = O. (|

Proof. Suppose C is nice. First, observe that £y, (Xy) = {O}. Thus, Cp = Ois nice and C = C1[- -+ [Cp] -+ -]
Then, observe that:

Ered (Zv) = {Q(O,u), Q(val(Od), u), Q(val(\(O)),u), Q@(val(A\([z]w)),0) | u € Ter }

Every element of &q(Xy) is a one-hole context with function symbol @ in the outermost position. Thus,
for C" € &rea(Ey) and u € Ter, it holds that C'[u] is of the form @Q(uy,uz).

Let u = @Q(val(z), val(z)) and let C] = Cipq[...[Cr[O]]...] and C} = Cy[...[C;i—1[O]]...] for 1 <i < n.
It is clear that C' = C}'[C;[C]]] for 1 <i < n. Because C is a nice one-hole context, C[u] is nice by lemma 3.3.
For 1 < i < n, because C;[C}[u]] is of the form @Q(u;,us) and C}'[C;[C}u]]] is nice, it holds that C}' and
C;[Ci[u]] are nice by lemma 3.7 (2). Then, using lemma 3.7 (2) again, because C}[u] is of the form @(u1, us)
and C;[C}[u]] is nice, both C; and C}[u] are nice. Thus, it is proven that Cy, C4, ... ,C, € DomDef(7,7'). O
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Lemma 5.8. EvalCont(Xy) N DomDef(7,') = NiceEvalCtxtsy, . O

Proof. By lemma 5.7, if C' € EvalCont(2y) N DomDef(7,!), then C =
and {C;,,...,C, } C NiceRedy, C Eea(Xy) where

[
h
3
N
2,
o+
=
i
Il
O

NiceRedy, = {@Q(O, u), @(val(A([z]u)),0) | v € DomDef(7,7') } .

It is then easy to verify that C' € EvalCont(X,) N DomDef(77") iff C € NiceEvalCtxtsy, . O

Evaluation in )\, Evaluation contexts and an evaluation relation for A, are defined as follows.

E € EvaluationContexty, == O | EM | (Ae.M) E (1)
M+, N iff M=E[M'], M'~,, N', and E[N'|= N

Let —», be the reflexive and transitive closure of the —,_ relation.

REMARK 5.9. The syntax of evaluation contexts defined in (1) is a restriction of the syntax usually specified
in the literature (e.g., [Fel88, SF93]):

E:=0|EM|VE (2)

When using a reasonable type system and evaluation is restricted to closed well typed terms, the definitions
in (1) and (2) yield equivalent evaluation relations.

As an example of the difference between (1) and (2), the context C' = (Az.(Ay.y)z)(yO) is an evaluation
context by (2) but not by (1). The context C is not an evaluation context by (1) because there is no chain
of demand from the root of the context to the position of the hole. Consider instead the slightly different
evaluation context E = (Az.(Ay.y)z)((Az.z z)0). In this case, there is a chain of demand, because E can be
decomposed as E = E;[Ey] where Ey = ((Az.(Ay.y)z)0) and Ey = ((Az.z z)d). The evaluation context F;
demands the evaluation of whatever is in its hole, because E;[M] can be a redex if M matches a specific
pattern. Similarly, F» demands the evaluation of whatever is in its hole. Looking at the decomposition
C = E;[C'] where C' = (yO), there is no chain of demand from the root to the hole in C, because C' does
not demand the evalution of whatever is in its hole. This is because no amount of reduction done within M
can make C'[M] into a redex. O

Lemma 5.10. 7 '(NiceEvalCtxtsy, ) = EvaluationContexty, .
Proof. By lemma 5.6 and by inspection of the respective grammars and the definition of 7.
Lemma 5.11 (Evaluation Simulation). M +——,, N iff T.(M) —x, T+(N).

Proof. By lemmas 3.20, 5.8, and 5.10.

O O o o o

Theorem 5.12 (Standardization for \,). If M —»,,  V, then 3 V' such that M ), V' —», V.

Proof. If M is a value, then take V' = M. Otherwise, by lemmas 3.1 (2) and 3.20 there exist v = T (M) €
Ter(Xy) and v = T, (V) € Val(Zy) such that v —»x, v. By lemma 5.4, there exists a v' € Val(Zy)
such that u —»y, v —»yx, v. Then by lemmas 3.1 (2), 5.11, and 3.20, for V' = 7,;7'(v') € Value,,,
My, V! —y\, V. 0

52 (A %)

This section proves standardization for £, and then transfers the result to A°™. The top-level structure
follows that of section 5.1.
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5.2.1 Standardization for X

Lemma 5.13. Let u € Ter(Xqr), let X C Skel(u) be prefiz-closed, let f = Tree(u) | X, let P = Unex(X,u)
and let S = PossVals ., (f). Then Ip € P such that Vs € S, p € Int(s). O

Proof. By induction on MaxPathLen(f) = max({|p| | p € DomDef(f) } U{—1}). By cases on f.
1. f =@. Then § = ValPatt(X¢y,) and P = {€} and € € Int(s) for all s € S.

2. f(e) = c. Then § = @ and the result is trivially true.
3. f(e) = A. Then there are 2 cases.
(a) f(1)is defined. Then S = &.
(b) f(1) is undefined. Then P = {1} and 1 € Int(s) for all s € S.
4. (a) f(e) = x,, with u = %, (u1,...,uy). There are 3 cases to consider.

i. 3ie{1,...,n} such that NotVal(f;, Xcy.). Then NotVal(f, Xcr) and S = @.

ii. Vie{l,...,n}, IsVal(fi, Xciw). Then IsVal(f,¥cr) and therefore S = &.

iii. Vi e {l1,...,n}, "NotVal(f;,Xcw) and Ji € {1,... ,n} such that MaybeVal(f;, Xci). Then
it follows that MaybeVal(f,Xcn.). Let j be any integer such that MaybeVal(f;, Xcn.). Let
X;={p|j-peX}and f; = Tree(u;) | X;. By lemma 3.31 (3), u; € Ter(Xcn). Note
that X; C Skel(u;) is prefix-closed. Let S; = {s; | Xn(s1,...,5,) € S}. Note that S; =
PossValsq, (fj). Let P; = {p|j-p€ P} Note that P; = Unex(Xj;,u;). Then by the
induction hypothesis, there exists a path p € P; such that p € Int(s) for all s € S;. Therefore
j-p€ Pandj-pé€ Int(s) for all s € S.

(b) f(e) =in; with u = in;(u'). This case is handled similarly (and is simpler).

5. f(e) € { u,case;, @, m; | i > 1}. These cases are similar to case 2 except that S = @ because the term
being explored is definitely not a value. O

Lemma 5.14. Let u € Ter(Xcw), let k = |Skel(u)|, let ©cy, = ValChoose(Xcy), let 0 < i < k, and let
v = NextOrders, | g, «([]) # wrong. Let p € v and let S = {s | (u.p,s —t) € Posssy, (7,u) } # @. Let
P =\,csInt(s). Then there exists a path q € P such that p - q € Unexs,, (v, u). O

Proof. Observe that Tree(u)(p) = Tree(s)(e) for any s € S. By a case analysis on Tree(u)(p)-

1. Suppose Tree(u)(p) = @Q. Then, for every s € S, it holds that s = @(A([z]Z(x)), s") for some metavari-
able Z and s’ € ValPattcr,. By cases on 7.

(a) Suppose p-1 ¢ ~. Then g = 1 satisfies the desired conclusion.
(b) Supposep-1€~yandp-1-1¢~. Then ¢ =11 satisfies the desired conclusion.

(c) Suppose otherwise. Let (C,(u')) € Decomp(u,{p-2}), and let X = {p'|p-2-p' €~}. Itis
not hard to see that X C Skel(u') is prefix-closed and u' € Ter(X,.) by lemma 3.31 (2). Let
f =Tree(u') | X. Let §" = {s| @Q(A([z]Z(z)),s) € S} and let P’ = [, s Int(s). Observe that
S' C ValPattcr, and that for every s € S’ there exists a s’ € PossVals,, (f) such that s ~ 5.
Then, lemma 5.13 can be used to show there exists a path ¢’ € Unex(X,u’) such that ¢' € P'.
Then g = 2 - ¢' € P satisfies the desired conclusion.

2. Suppose Tree(u)(p) = m; where i > 1. Then, for every s € S, it holds that s = m;(s") for some
s" € ValPattcrr. Then the same reasoning used above can be repeated.

3. Suppose Tree(u)(p) = case, 41 where n > 1. Then, for every s € S, there exist some metavariables Z,
..., Zn and metaterm s’ € ValPattcy, such that s = case,+1(s', [z]Z1(x),... ,[z]Z,.(x)). By cases on

Y-
(a) Suppose p-i ¢ v where 2 < i <n+ 1. Then g = i satisfies the desired conclusion.
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(b) Suppose otherwise. Then the same reasoning used above can be repeated.
4. Suppose Tree(u)(p) = p. Then, S = {u([z]Z(z))}. Then ¢ = 1 satisfies the desired conclusion. O
Let Tey, = ValOrder(X¢y,).
Lemma 5.15. [y, is a subterm ordering function. O

Proof. Tt is equivalent to show that wrong ¢ Ran(T'cr.). Let u € Ter(Zow), let Ocy = ValChoose(Zcey ),
and let k = |Skel(u)|. = We show by induction on i that NextOrdery, g, «([]) # wrong for 1 < i < k.
Observe that in general, if § # wrong, then NextOrders g ,(J) = wrong iff either Opty,(d, ) = wrong or

O (Opts (0, u), Tree(u) | ) = wrong,.

For i = 1, Possg, ([J,u) = @ and Opty_, ([J,#) = Unexs, ([J,u) = {e}. It is then easy to see that
Ocm ({€}, Tree(u) | &) = € and therefore NextOrderlsz’@CIL’u([]) = [e].

For the induction step, we show that if Posss ., (0;—1,u) # &, then Mands, ., (§;—1,u) # & and that if
PossVals,,, (Tree(u) | d;—1) # @, then MandVals,,, (Opts,,, (6;i—1,u), Tree(u) | d;—1) # 2.

To establish the former, let §;,_; = [f,p'] and suppose Posss,, (d;—1,u) # @. By lemma 4.5, there exists
a path p € 0;_; such that for all (u.p',s = t) € Possy,. (di—1,u), it holds that p = p’. Then, by lemma 5.14,
there exists a ¢ such that p- ¢ € Unexy ., (d;—1,u) and for all (u.p,s = t) € Posss,, (6;—1,u), it holds that
q € Int(s). Thus, Mands ., (6;—1,u) # 2.

To establish the latter, let f = Tree(u) | d;—1 and observe that if PossValy ., (f) # @, then FDes(X )N
Ran(f) = @. Therefore Opty . (0;—1,u) = Unex(d; 1,u). Then by lemma 5.13,

MandVals,,, (Opty,,, (6;i-1,u), Tree(u) | 6;1) # @.

Lemma 5.16. X, is manageable.

Proof. Lemmas 3.40 and 5.15.

[ T N I N

Corollary 5.17. EvalCont(Xy) is well-defined.

Lemma 5.18 (Standardization for Y. ). If u —»y., v, and v € Val(Xcy), then there exists v’ €
Val(Eci) such that u —»xg,, v/ —»x,, V. O

Proof. By theorem 4.3 and lemma 5.16. O

5.2.2 Standardization for \CI

Following the same top-level structure as the proof presented in section 5.1.2, standardization for A°™ will be
obtained by defining —,cm. on Termycn. and showing this relation corresponds with the evaluation relation
Yo of Y-

We begin with a grammar that will be shown to characterize the set EvalCont(X ¢y, ) N\DomDef(75}), i.e.,
the set of nice evaluation contexts. In this grammar, restrict v to range over the set Val(X¢,,)NDomDef (7;;})
and restrict u to range over DomDef(7;;}).

e € NiceEvalCtxtssey, = f | Xngmt1(V1,... ,Un,€,U1, ... ,Um) | inj(e)

fe= 0 @(fu) | @A(ru)e)
| 7Tl(f) | 7Ti(><n+m+1('01;--- yUn,€, UL,y ... ,um))
| casery1(f, [x]ui, ... ,[r]w) | caseryq(ing(e), [z]u, ... , [z]w)
wheren,m >0and 1 <i<n+m+1land 1 <5 <]

Lemma 5.19. Any context e or f derived by the above grammar is nice. O

Proof. By induction on the structure of e or f. O

Lemma 5.20. Let C = Cy[Cy,[...[Cy,]...]] where Cy € Eva1(ZBow) and {Cyyy ... ,Cr. } C Ered(Zcr). Then
if C € EvalCont(X¢;.) N DomDef(75;}) it holds that {Cy,Cyy, ... ,Cr. } C DomDef(7;}). O
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Proof. First observe that Eya1(Xer) is the least set such that

Eval (Bew) ={C | C=0or C = X(0O) or C =in;(C,) where Cy € Eva1(Tcm) Or
C= Xu(v1,...,05-1,Cp,Upt1,--- ,un) where 1 < k < n,
{v1,...,vp—1} C Val(Zcn),Cy € Eval(Zen) and {upy1, ... ,up} C Ter}

and that

Ered (Bow) ={C | C =Q(0O,u) where u € Ter or C = @Q(A(O),u) where u € Ter or
C = Q(A\([z]u), Cy) where u € Ter and C,, € Eya1(Zor,) or C = ;(0) or

C= mi(Xn(i,. . ,0p-1,Cp,Ukt1,--- ,Uy)) where 1 <i<n,1 <k <mn,
{v1,...,0p-1} C Val(Zew), Cy € Eval(Zer) and {ug41,... ,un}t C Ter or
C = case,4+1(0,uy,... ,u,) where {uy,... ,u,} C Ter or
C = casept1(in;(Cy),u1,. .. ,uy) where 1 < j <n, C, € Eui(Xcn) and
{u1,... ,un} C Ter or
C = caseptq(in;(v), [x]u,- .., [#]ug—1, 0, Ukt+1,- .. ,u,) where 1 < j <mn,
1<k <n,veVal(Ze) and {ui, ... ,u,} C Ter or
C=uo)}
Observe that every element of the set Ereq(Zcrr.) is a one-hole context with a function symbol in the outermost
position. Thus, for C' € &ed(Xen) and u € Ter, C'[u] is of the form F(uy,... ,um).
Let ¢ € Consty,, and, for 1 < i < n, let C; = Cy,[...[Cy,]...]- Observe that because C is a nice

one-hole context, C|c] is nice. We can now conclude the proof by n applications of lemma 3.33. Because
Clc] = Cy[Cy]c]] is nice and Cy[c] is of the form Fi(uq,...,un,), by lemma 3.33, C, and Ci[c] are nice.

Then, because Ci[c] = Cy, [Ca]c]] is nice and Cs[¢] is of the form Fs(uy,...,Um,), Cr, and Cs[c] are nice.
This reasoning holds for all C;, 1 <i < n. Therefore, {Cy,Cyy, ... ,Cr, } C DomDef(75}). O
Lemma 5.21. EvalCont(Xcy,) N DomDef(7;;}) = NiceEvalCtxtsy ., - O

Proof. By lemma 5.20, if C' € EvalCont(Xcr,) N DomDef (73} ), then C = C,[Cy,[...[Cr,]...]] with C, €
NiceValy,,,, and {Cy,,...,C, } C NiceReds,,, where

NiceValy., = {C | C =0or or C =in,;(C,) where C, € NiceValy, or
C= xu(vy... ,06-1,CpyUkt1, ... ,Uy) where 1 < k < n,
{v1, ..., 01} C Val(E¢,) N DomDef(75}), Cy € NiceValg,,, and
{uks1,y---,un} C DomDef(75}), }

NiceReds,,, = {C | ,u) where u € DomDef(7;;}) or

([]uw), Cy) where u € DomDef(75;) and C, € NiceVals,,,, or

;(0) or

Ti(Xn (V1o Vk—1,CoyUgt1,-.- ,Upn)) where 1 <i<m, 1<k <n,

{v1,..., 01} C Val(E¢,) N DomDef(75}), Cy € NiceValg,,, and

{uk+1,--. ,up} C DomDef(73}) or

C = casepi1 (O, [z]u, . .. , [z]u,) where {uq,... ,u,} C DomDef(73}) or

C = caseni1(in;(Cy), [z]u1,. .. ,[r]u,) where 1 < j <n, C, € NiceValy,,, and
{u1,... ,up} C DomDef(75!) }

It is then easy to verify that C' € EvalCont(X¢,,) N DomDef(7;}) iff C € NiceEvalCtxtsy,, - O

oo
>0
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Evaluation in Evaluation contexts and an evaluation relation —, ci for
Let —,c. be the reflexive and transitive closure of —,crw.

are defined in figure 6.

Lemma 5.22. 7! (NiceEvalCtxtsy,, ) = EvaluationContextycrm . O

Proof. By lemma 5.19 and by inspection of the grammars and the definition of T¢yy,. O

The correspondence between the evaluation relations in A°™ and ¢ will now be established as it was
for A, and X, in section 5.1.2.

30



Evaluation Contexts
E € EvaluationContextyc. :=F | x(V1,... , Vo, E,My,... ,My,) | in; E

F:= 0| FQM | (AxMQEFE
|7TiF | T X(Vl,...,vn,E,Ml,...,Mm)
| case F bind z in M, ... ,M;
| case (in; F) bind z in My, ... ,M;
wheren,m>0and 1 <i<n+m+land1 <5<

One-Step Evaluation Relation

M +—,cn. N if M =E[M'], M ~,cu. N', and E[N']= N

Figure 6: Evaluation in A“™",

Lemma 5.23 (Evaluation Simulation). M —,cu N iff Tow (M) — sy, Tow(N). O
Proof. By lemmas 3.45, 5.21, and 5.22. O

Theorem 5.24 (Standardization for \°'V). If M —s,ci. V, then M +—»,ci. V! —s o V for some
Ve ValueACIL. O

Proof. If M is a value, then take V' = M. Otherwise, by lemmas 3.25 and 3.45 there exist u = Tow (M) €
Ter(Xer) and v = Tor, (V) € Val(Zey) such that w —»y,, v. By lemma 5.18, there exists a v' € Val(Xqr.)
such that v 5, v' —»xn, v. Then by lemmas 3.25, 5.23, and 3.45, for V' = 75! (v') € Valueyom,
M >, cI1L V’ —*,CIL V.

O

6 Conclusion

This paper has presented two worked examples showing how to use the general standardization and evaluation
framework presented in [WMO0O]. The first major contribution of this paper is to show in detail for the two
examples how to correctly define a CRS exactly corresponding to a programming language calculus. As a
side benefit of this, the two calculi are proven confluent. The second major contribution is to show that
the conditions of the general framework are met thereby (1) automatically deriving notions of evaluation
for the calculi and (2) proving that the two calculi have the desired standardization properties. The result
guarantees that the calculi can be safely used for meaning-preserving program transformations.
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Appendix A

Figure 7 contains copies of definitions from sections 4.1 and 4.3. They are repeated here together in one
place for ease of reference.

G(%,0)(s) = NextOrderk, ¢ ,([]) where k = |Skel(s)| and

NextOrders.o.s(§) = {[ﬁivpi+1] if 6 = [ﬁ”] # wrong and NextPoss, e (["], §) = pi+1 # wrong,
wrong otherwise,
Tr if
NextPoss.o(7,5) = {Q(Optz(% s), Tree(s) 1 7) if Opty (7, 5) # wrong,
wrong otherwise,
Unex(y,s) = minc(Skel(s)\ )
Discs(y,s) = {(s.p,r) | r € Red(X),Vq € Int(r).
p-q € 7 and Tree(s)(p - q) = Tree(LHS(r))(q) }
Invs(y,s) = {p|(s.q,r) € Discn(v,5),q" €Int(r),p<q-q'}
Possxz(v,s) = {(s.p,s =1t) | pey\Invs(y,s),s =t € Red(X),
Vq € Int(s'). p- q € v = Tree(s)(p - q) = Tree(s')(q) }
PossUnex(s.p,r) = {p-q|q €Int(r),p q € Unex(y,s)}
Mands(vy,s) = ﬂ PossUnex(s.p, )

(s.p,r)EPossx (v,s)
Unex(7y,s)  if Posss(y,s) =@,
Mands (v, s) if Posss(v,s) # @ and Mandx (v, s) # &,
v,$) # @ and Mands(y,s) = &

OptE (77 S)

wrong if Posss(7,

Clw] =
(€™ (@")) € Decomp (w, P) <= { and Skel(C) = {q € Skel(w) | fpe P.p < ¢}
and Tree(C)(P N Skel(C)) = {O}
ValPatt(X) = ming{s; | s >t € Red(X),s = F(5"),1<i<n}
Val(X) ={v(s)| s € ValPatt(X), v is a valuation for s}
CtxtsPos(s,p, P) = { C" | (C™), x) € Decomp(s, {p} U P), @ € Ter, (C', x') € Decomp(C[il, {p}) }
ContextsMTs(s) = {C'| ValOrder(X)(s) = [p"],2 < i < |Int(s)|,
C € CtxtsPos(s, pi, min< ({pi+1,... ,pn} U {p | Tree(s)(p) € MVar }))}

w

Erea(2) = UsatQRed(E) ContextsMTx(s)
Eval(X) = Usevarpati(s) ContextsMTx (s) U {9}
EvalCont(X) ={C[CL[--[Cn] 1] | C € Eat(E),C™ € Erea (D) }
PossVals(f) = {s € ValPatt(Z) | Ip’ € Int(s).f(p') is undefined,
¥p € Int(s). f(p) defined = f(p) = Tree(s) (1)},
MandVals (P, f) = PN (Nsepossvaly () 1b(5)),
minjex(P) if PossVals(f) = @,
ValChoose(X) (P, f) = { minjex(MandVals (P, f)) if PossVals(f) # @ and MandVals (P, f) # &,
wrong if PossVals(f) # @ and MandVals (P, f) = @.
ValOrder(X) = G(Z, ValChoose(X))

Figure 7: The generic subterm ordering function generator and related functions.
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